Cereal disease control -How can we manage today's threats for future control?

Steven Kildea Teagasc CELUP Oak Park Crops Research

An ever-present problem in Irish cereals

With exception of rusts, fungicide resistance present to at least one MOA in all major fungal pathogens of Irish cereals

<u>Outline</u>

1. What is the threat?

- Evolving diseases (resistance)
- Loss of actives (CTL)
- Changing climate (unpredictability)

2. What are the solutions?

- New fungicides
- Better varieties
- Changing systems (increase diversity)

3. How to protect the solutions?

Why are foliar diseases a problem in Ireland?

A recent reliance on CTL

Yield responses (winter wheat) from fungicides 2003-2017

Teagasc Wheat Fungicide Trials 2003-2017

- 73 Trials
- 154 Direct comparisons
- Significant Year x CTL interaction (P<0.001)

Septoria & Ramularia

Future post CTL?

Septoria tritici blotch

- Varietal Resistance
- Agronomic practises
- New fungicides
- Alternative multi-sites
- Quality of grain <u>not</u> important - feed

Ramularia leaf spot

- Varietal Resistance
- Agronomic practises
- New fungicides
- Alternative multi-sites
- Quality of grain <u>extremely</u> important malt

Managing future actives?

Adavelt[™] (2024?)

Adepidyn ™ (2022?)

Inatreq[™] (2020)

Varietal Resistance not up to the task

Year

Resistance to fungicides & varieties will emerge

<u>Usage = Resistance</u>

Fungicides/varieties have a limited life span

Almost inevitable resistance will emerge

Need to minimise exposure as much as possible

Resistance management is your responsibility

Integrated Pest Management

"Integrated pest management (IPM) means <u>careful</u> consideration of all available plant protection methods and <u>sub-sequent integration of appropriate measures</u> that discourage the development of populations of harmful organisms (including weeds, diseases, insect and other animal pests), and keep the use of plant protection products and other forms of <u>intervention to levels that are economically and ecologically</u> <u>justified, and reduce or minimise risks to human health and</u> <u>the environment.</u> IPM emphasises the growth of a healthy crop with the least possible disruption to agroecosystems and encourages natural (non-chemical) pest control mechanisms"

(The Sustainable Use Directive 2009/128/ EC).

IPM

Managing Cereal Diseases

Must adopt concept of IPM

Accurately capturing IPM on arable farms

Consensus amongst stakeholders?

Question	Differences
Q: Proportion of land in continuous cereals?	No Differences
Q: Why you use an arable rotation?	No Differences
Q: What influences variety choice?	Farmers/Agronomists rate higher
Q: Preventive measures are used to control pests?	No Differences
Q: Factors considered in pest management plan?	No Differences
Q: Membership of discussion group?	Farmers/Agronomists rate higher

Both questions contribute lowest amount to final score

Applying it to Irish & U.K. farms

Positive relationship between practise and familiarity of IPM

Differences do exist between different countries

Spearman Correlation Coefficient = 0.49521, P<0.0001

Conclusions & Questions

- Combination of 6 questions and metric allows a simple means of measuring IPM on arable farms
- Combining with questions on perception & farm enterprise information will aid identification of potential means to improve IPM
- Can we determine what an acceptable level of IPM is?
- Does IPM relate to profitability of the enterprise?
- Can we identify why differences in IPM levels may occur?

Prevention & Suppression

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Monitor & Decision making

The importance of identifying leaf 3 for septoria control in winter wheat

Understanding the crop

- 1. How is yield created?
- 2. How can this yield be protected?
- 3. When should interventions be made?

https://m.youtube.com/watch?v=C1NTqQJ-HS8%26t%3D64s

; https://www.youtube.com/watch?v=xUqKEVtXTts&t=5s

Simple tools

Spray painting leaves at application

Getting fungicide timing right (IPM)

Treatment combinations

Trt	Leaf 4	Leaf 3	Leaf 2	Leaf 1	Ear
1	+	+	+	+	+
2	+	+	+	-	+
3	+	+	-	+	+
4	+	+	-	-	+
5	+	-	+	+	+
6	+	-	+	-	+
7	+	-	-	+	+
8	+	-	-	-	+
9	-	+	+	+	+
10	-	+	+	-	+
11	-	+	-	+	+
12	-	+	-	-	+
13	-	-	+	+	+
14	-	-	+	-	+
15	-	-	-	+	+
16	-	-	-	-	+
17	-	-	-	-	-

Objective

- What leaf layers important for yield?
- How best to achieve disease control on these leaves?

<u>Methods</u>

- 6 site seasons in 2016 & 2017
- Combinations of leaf applications
- 2016: CTL 1.0 l/ha
- 2017: Elatus Era 0.8 & CTL1.0 l/ha

Optimising application timing

- Contribution of L1, 2 & 3 similar when in "programme"
- L4 showed lowest contribution
- Variation between sites due to infection events

eagase

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Conclusions

- Loss of CTL has potential to cause havoc
 - Disease control issues
 - Increased development of resistance
- New actives (fungicides) are on the horizon
 - Resistance management will be essential
 - Reduced tools to achieve this??
- Must increase attention and adoption of IPM practices across all arable systems - collective approach needed!

Acknowledgements

Teagasc Crops Research

Teagasc Tillage Specialists

Pesticides Registration and Control Division

