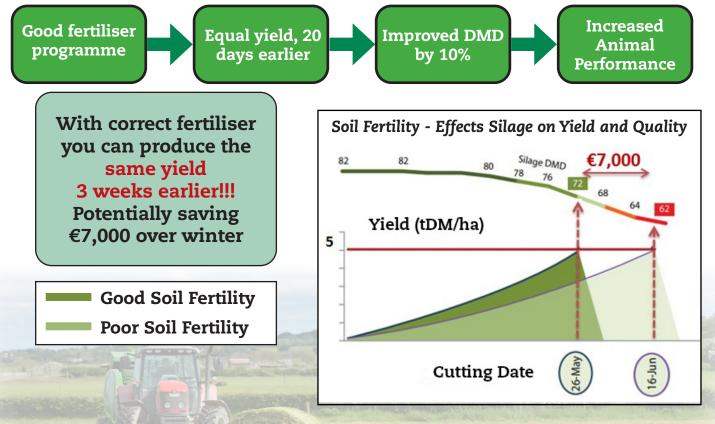


Why do you need better quality silage?


High DMD silage (75% DMD), that is a leafy silage sward prior to mowing, can add value to your stock on a lower feed cost as highlighted in the table below.

Silage quality	Good 72% DMD	Average 68% DMD	Poor 62% DMD	Very Poor 55% DMD
Store cattle on silage only Liveweight gain (kg/140 day winter)	102	83	55	21
Weanlings Concentrates required (kg/hd/day)	1.0	2.0	3.0	4.5
For 100 <u>weanlings</u> 140 day winter	14 Ton	28 Ton	42 Ton	63 Ton
Conc. Costs over winter	€3,500	€7,000	€10,500	€15,750

Delaying your cutting date can cost up to €500/day due to higher feed costs and reduced performance!

How can you achieve this?

To improve quality you need to harvest the crop at a younger (leafy) stage.

Joe Hand and Louise Pierce, Teagasc

Your Worksheet

A good fertiliser programme will allow you to decide your silage DMD. Based on your soil results you can work out your requirements below.

Please note slurry can be a very variable product and should not be overvalued.

 22 m^3 / Ha cattle slurry is approx = 185 Kg per Ha 0.7.30

		Units/Acre		Bags/Acre			
Soil Index	N	Р	К	0-7-30	Protected Urea (38%)	Urea (46%)	
Index 1	100	32	140	4.5	2.6	2.25	
Index 2	100	24	124	3.5	2.6	2.25	
Index 3	100	16	100	2.25	2.6	2.25	

		Kg/Ha		Kg/Ha			
Soil Index	N	Р	K	0-7-30	Protected Urea (38%)	Urea (46%)	
Index 1	125	40	175	550	330	275	
Index 2	125	30	155	430	330	275	
Index 3	125	20	125	280	330	275	

Is your fertiliser plan adequate?

	Requirements from above (N, P, K)				N	Р	К
Step A	E.g. Index 2 (Kg/Ha)			125	30	155	
	Fertiliser T	уре	Quan	tity Applied	N	Р	K
	E.g. 24-2.5	-10	370Kg/Ha (3 bags per ac)		125	30	155
Step B							
Step C	Total Applied (N, P, K)						
Char D	Deficit left to be applied (A-C)						
Step D	E.g. Deficit from example above			53	20.7	118	

Address this deficit to achieve the true potential from your silage: "Higher weight gain at low costs next winter"

For further information on any issues raised in this factsheet, please contact your local Teagasc Advisor or see www.teagasc.ie

 $\mathbf{A}_{\text{GRICULTURE AND}} \, \mathbf{F}_{\text{OOD}} \, \mathbf{D}_{\text{EVELOPMENT}} \, \mathbf{A}_{\text{UTHORITY}}$