The Effect of Feed and Stage of Lactation on Milk Processability

Dr Eva Lewis², Michael Reich, Giulio Visentin, Audrey McDermott, Dr Sinéad McParland², Dr Mark Fenelon¹

¹Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork ²Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork

Presentation Guide

Background

Research approach

Milk production

Milk processability

Predicting milk processability (MIR)

Milk Quality 'Processing'!

Why milk processability?

- Milk urea nitrogen (MUN) concentrations very high in spring 2011
- □ MUN not beneficial from processing cheese perspective

Milk Proteins

Casein: 78-80% of milk protein

- as1, as2, b and k
- Relatively heat stable
- Aggregation, yoghurt / cheese manufacture
- Whey Proteins: 17-20% of milk protein
- Globular, highly folded, a-helices, b-sheets
- □ b-lactoglobulin (~10% total protein)
- a-lactalbumen (3.7%)
- Other serum proteins: BSA, Ig
- □ Not heat stable: can aggregate (gel)

Non protein Nitrogen: 5%

Why milk processability?

- Milk urea nitrogen (MUN) concentrations very high in spring 2011
- □ MUN not beneficial from processing cheese perspective
- What factors affect MUN?
 - Diet affects milk composition (Broderick, 2003) and milk processability (of which heat stability is an indicator) (Singh, 2004)
 - Stage of lactation has an important effect on milk processability (Guinee et al., 1999)

Ireland and the grass-based system

- Maximum profitability for dairy farms achieved through optimum utilisation of pasture (O'Donovan et al., 2007)
- However, due to grass growth deficits in spring and autumn, and poorer grass quality in autumn, supplementation is required (Burke et al., 2008)

Presentation Guide

Background

Research approach

Milk production

Milk processability

Predicting milk processability (MIR)

Research Approach

Teagasc AGRIC and Teagasc FRC joint research
 Impose diets on dairy cows in spring (early lactation) and autumn (late lactation) to

- Measure milk production
- Generate milk from different treatments
 - Measure total milk protein, NPN and Non-casein N using Kjeldahl method
- Remove fat by 'Separator' to make Skim milk
 - Measure protein profile (casein and whey)
- Measure heat coagulation time on freeze dried samples

Experimental diets

Spring - early lactation
 Autumn - late lactation
 Grazed grass as the base feed
 With supplementary feed

 ∮ grazed grass as supplementary feed ↑

 Spring: no grass silage, only concentrate
 Autumn: both feeds considered

 Spring: 4 kg DM high, medium or low CP concentrate feed (+13 kg DM grazed grass)
 Autumn: 13 kg DM grazed grass alone, or with 4 kg DM

supplementary feeds - grass, bale silage, pit silage or concentrate

Presentation Guide

Background Research approach Milk production Milk processability

Predicting milk processability (MIR)

Milk production

13 kg DM grass SPRING 4 kg DM concentrate	High CP	Medium CP	Low CP
Milk Yield (kg/d)	27.6	27.0	26.2
Milk Fat (%)	4.5	4.5	4.6
Milk Protein (%)	3.41	3.36	3.37
Milk Solids (kg/d)	2.1	2.1	2.0

AUTUMN	17 kg DM grass (HG)	13 kg DM grass (LG)	LG + 4 kg DM bale silage (GB)	LG + 4 kg DM pit silage (GP)	LG + 4 kg DM conc (GC)
Milk yield (kg/d)	12.4ª	11.5 ^b	13.3 ^c	13.3 ^c	15.3 ^d
Milk fat (%)	4.91	5.08	4.98	4.67	4.79
Milk protein (%)	3.88	3.76	3.75	3.78	3.88
Milk solids (kg/d)	1.08ª	1.01 ^b	1.12ª	1.09ª	1.29 ^c

High MUN is an indicator of excess protein in the diet

Spring Milk Urea Concentration

Autumn Milk Urea Concentration

Presentation Guide

Background Research approach Milk production Milk processability

Selecting Milk Composition

.....for Processing!

Spring Milk protein fractions

Caseins account for ~80% of total protein - a higher concentration of casein increases cheese yield (Wedholm et al., 2006)

13 kg DM grass SPRING 4 kg DM concentrate	High CP	Medium CP	Low CP		
a _{s1-} Casein (g/l)	11.31ª	11.69 ^{ab}	12.63 ^b		
a _{s2} -Casein (g/l)	2.42	2.26	2.36		
β-Casein (g/l)	7.25	8.67	8.44		
к-Casein (g/l)	2.86	3.28	3.12		
β-Lactoglobulin (g/l)	3.64ª	4.21 ^b	4.20 ^b		
a-Lactalbumin (g/l)	0.81	0.85	0.83		
B-Lactoglobulin is associated with changes in milk heat stability					

Autumn Milk protein fractions

AUTUMN	17 kg DM grass (HG)	13 kg DM grass (LG)	LG + 4 kg DM bale silage (GB)	LG + 4 kg DM pit silage (GP)	LG + 4 kg DM conc (GC)
a _{s1-} Casein (g/l)	14.2	13.6	14.6	14.2	14.8
a _{s2} -Casein (g/l)	2.79	2.74	2.59	2.70	2.92
β-Casein (g/l)	8.63	8.96	10.40	9.20	9.57
к-Casein (g/l)	4.62	4.26	4.19	4.03	4.27
β-Lactoglobulin (g/l)	4.83	4.58	4.84	4.68	4.81
a-Lactalbumin (g/l)	0.58ª	0.60ª	0.67 ^b	0.65 ^b	0.676

a-Lactalbumin

-is major protein of human milk $\rightarrow \uparrow$ in proportion of a-LA in cow's milk helps it more closely mimic human milk (Lien, 2003) -is related to production of milk lactose, so may be positively associated with milk yield (Farrell Jr et al., 2004) and therefore be reflective of milk yields of treatments

Spring Milk 'powder' heat stability

Consequences of low Heat stability - Fouling / Burn on

Protein (whey protein - denaturation/aggregation)Protein (casein protein – precipitation, instability)Increase in viscosity, back pressure on heat exchanger, etc.

Poor processability (protein burn on)

Manufacturing downtime

Presentation Guide

Background Research approach Milk production Milk processability

Predicting milk processability (MIR)

Predicting Processability?

Mid-infrared Spectrometry

Breed quality data base (n=730)

Basic Composition

Fat

Protein

Casein

Urea

Lactose

Total Solids

Protein Profile

κ-casein
a-s1-casein
a-s2-casein
β-casein
a-lactablumin
β-lactoglobulin a
β-lactoglobulin b

Amino Acids Cysteic Acid Aspartic Acid Threonine Serine Glutamic Acid Glycine Alanine Cysteine Valine Methionine Isoleucine Leucine Tyrosine Phenylalanine Histidine Lysine NH3 Proline

Physical Casein Micelle size Colour Lightness Blueness Yellowness

Functional

Heat stability Native pH Coagulation Properties Rennet Coagulation time Curd firmness

Minerals (n=140)

Full mineral profile

Correlation between gold standard and **MIR-predicted traits**

0.39 (beta LG a) to 0.69 (total LG) **Proteins**

Amino Acids 0.22 (Threonine) to 0.75 (Glycine)

0.74 **Coagulation time (RCT)** 0.84 □ Milk pH 0.68

□ Heat stability

Acknowledgements

DAFM RSF 11/sf/309 Precision Nutrition

Dairy Levy

Teagasc Walsh Fellowship

J. Dairy Sci. 98:1–15 http://dx.doi.org/10.3168/jds.2014-8437 © American Dairy Science Association[®], 2015.

The effect of dietary crude protein and phosphorus on grass-fed dairy cow production, nutrient status, and milk heat stability

M. Reid,*† M. O'Donovan,* C. T. Elliott,† J. S. Bailey,‡ C. J. Watson,‡ S. T. J. Lalor,§ B. Corrigan,# M. A. Fenelon,# and E. Lewis^{*1}

*Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland †Institute of Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AY, United Kingdom ‡Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, United Kingdom §Crops, Environment and Land Use Programme, Teagasc, Johnstown Castle, Co. Wexford, Ireland #Food Chemistry and Technology Department, Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland