Economic viability of farm-based codigestion of pig manure and food waste

28th March 2017

C. Dennehy, P.G. Lawlor, G.E. Gardiner, Y. Jiang, L. Shalloo, and X. Zhan

Agenda

- Specific aims of research
- Methodology
- Typical plant costs
- Current viability of mono-digestion
- Current viability of co-digestion
- Stochastic modelling
- Conclusions

On Farm Anaerobic Digestion-Barriers Thus Far

- Heat generated needs to be used onsite demand?
 Dig former
 - Pig farms
- REFIT Ireland 15c kWh vs ROCs in N. Ireland 28c
- Complex planning process

Manure and Food Waste Co-digestion

Pig Manure

Food Waste

- Additional revenue stream for farmers in the form of gate fees
- Reduce GHG emissions from agriculture
- Increase renewable energy provision
- Non-landfill management route for food residues

- ABP regulations do not permit on-farm co-digestion of food waste
- Adjacent, separate facility required.
- Higher digester construction and site civil costs

Rationale

- On-farm co-digestion plants in Ireland not common
- Need to analyse why, and how would they become profitable
- Focusing on a single co-substrate; Food waste (FW)

Aims

- The objectives of this study were
 - Identify and quantify the key revenue streams, capital, (CAPEX) and operational (OPEX) costs associated with monoand co-digestion.
 - Assess the current financial viability of co-digestion (PM and FW) and mono-digestion plants using a deterministic model
 - Present a methodology which can assess the sensitivity of overall profitability of co-digestion plants to changes in key revenue streams and operational expenses using stochastic modelling.

Methodology

• 6 scenario's to be analysed

Scenario No.	Farm Size (sows)	Digester tank size (m ³)	CHP Size (MWe)	Substrates
1m	521	1,500	0.05	Manure only
2m	2607	7,500	0.26	
3m	5214	15,000	0.52	

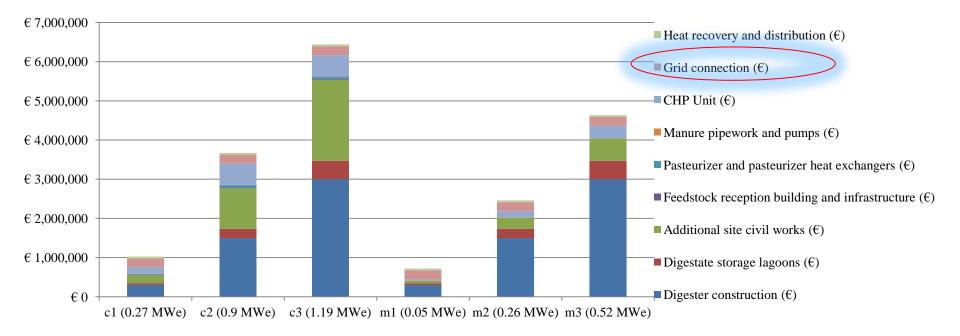
- Biogas utilization via combined heat and power unit (CHP)
 - Heat used on-farm to displace the use of oil boiler
 - Electricity to grid via REFIT
 - $\notin 0.15$ /kWh for plants with < 0.5 MWe, $\notin 0.13$ /kWe > 0.5 MWe
- FW co-digestion drives methane yields and generates gate fees
 - limited in scenario c1 due to digester size; need to maintain feedstock solids concentration below 15-20%; 3000 t/year
 - c2, c3; the average amount FW treated by AD plants in Ireland (8500 t/year; derived from EPA figures)

Financial Metrics

- Return on Investment
- Net Present Value (NPV)
 - Accounts for the payback of CAPEX, cash flow based on OPEX & revenue, and the future value of current capital and cash flow (the discount rate)
- Internal Rate of Return
 - Profit made while accounting for reduction in value of the capital invested in the project during project lifetime

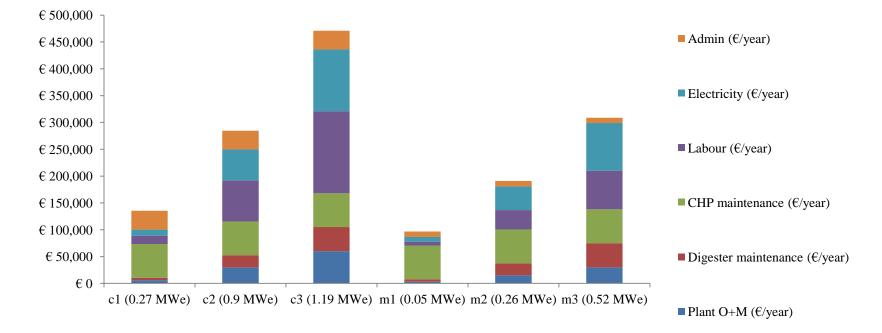
DETERMINISTIC ANALYSIS

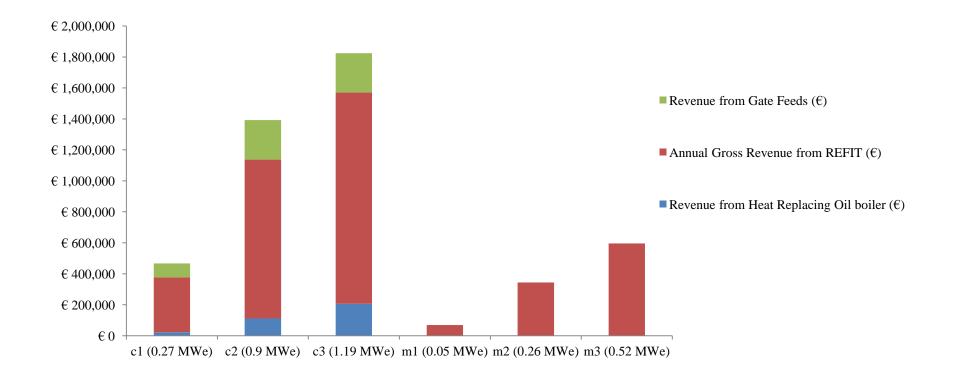
Department of Civil Engineering


Deterministic model

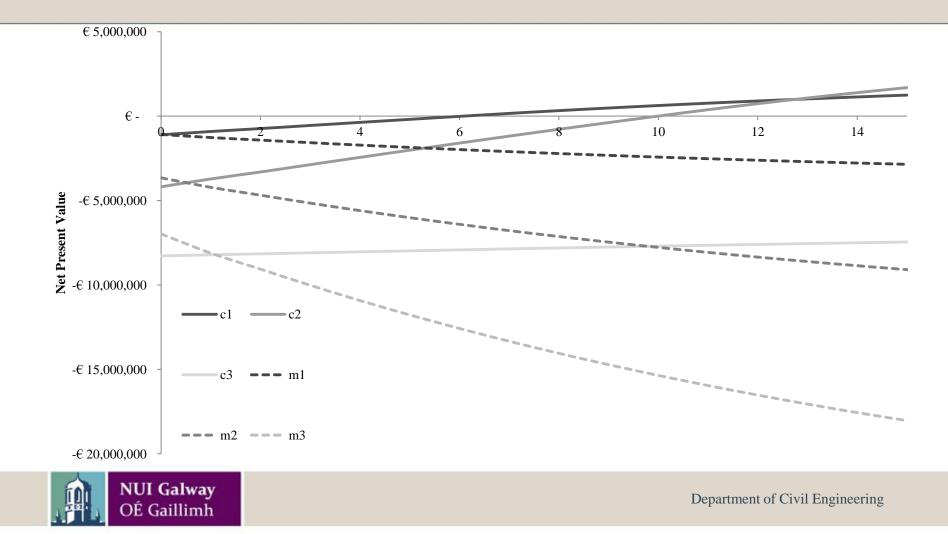
- Financial model based on fixed costs for capital expense (CAPEX), operational expense (OPEX) and revenues; static costs for
 - REFIT(€ 0.15/kWh or € 0.13/kWh)
 - Gate Fees ($\in 30/t$)
 - FW availability (**3000 t/a c1, 8,500 t/a c2 and c3**)
 - Digestate disposal costs (€4/t up to 5kt, €7/t thereafter)
- Data for model generated from lab and meso-scale plant operation, and contacting plant operators and designers
- CAPEX REMAINS HIGHLY VARIABLE!

Plant costs-CAPEX


• Ex. Development, engineering, contingency and insurance costs


Plant costs-OPEX

• Ex. Depreciation, interest and insurance


Plant revenues

Department of Civil Engineering

Results-baseline scenario (deterministic model)

Conclusions

- >70% of revenues from co-digestion systems and all of the revenue from mono-digestion generated by REFIT
- Scenarios c1 and c2 viable with RoI's of 126 % and 11 %, Internal Rate of Return (IRRs) of 20 % and 9 %
- Scenario c3, and all mono-digestion scenarios not viable
 - FW availability limits revenue generating potential; high CAPEX and OPEX

STOCHASTIC MODEL

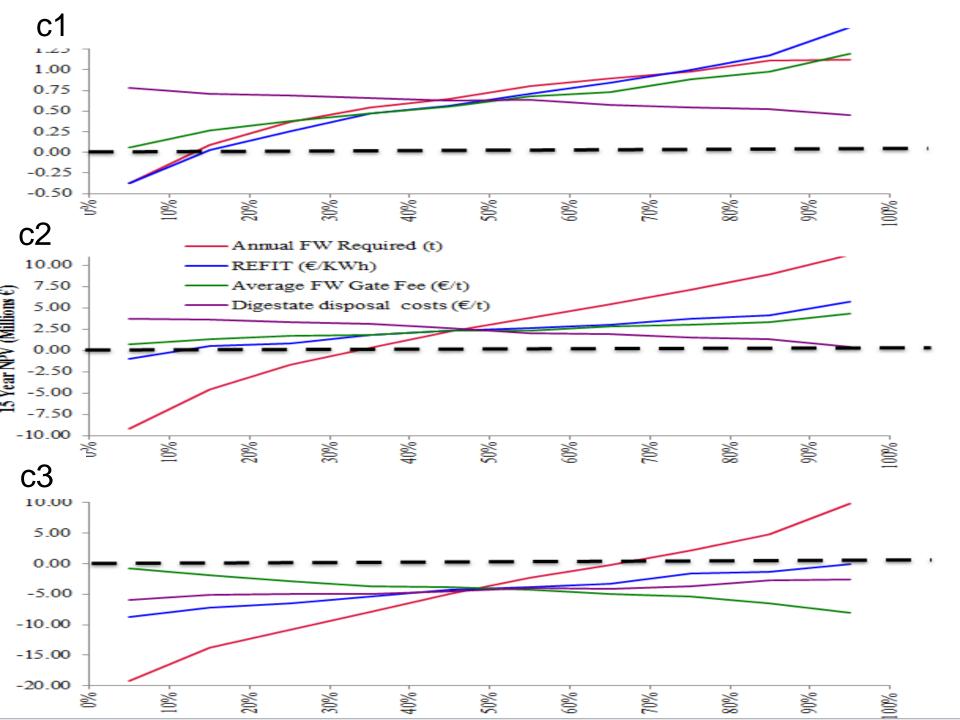
Department of Civil Engineering

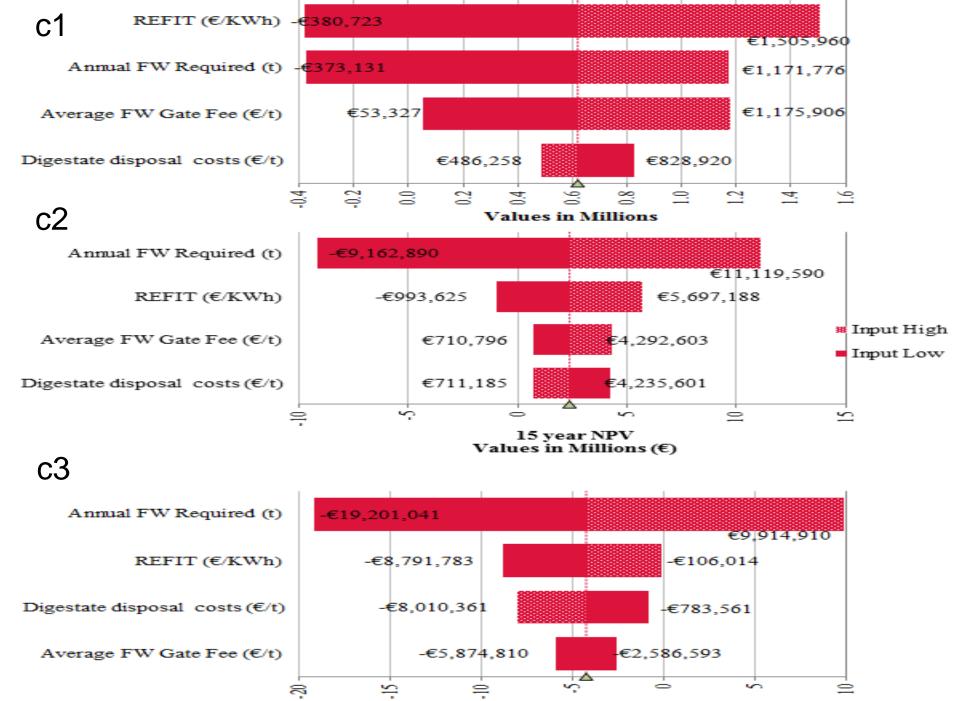
Variability in market conditions need to be considered

Analysis of project viability must consider these variable costs

Department of Civil Engineering

Stochastic model


- Analysis of the effect of possible changes in key inputs was undertaken via Monte Carlo simulation
 - The financial model was run 10,000 times, with the values for the variables changed randomly within Normal distributions
 - Parameters varied from worst case to best case scenario
 - The effect of these changes on 15 year NPV was recorded and analysed.



Variable distributions

- REFIT (mean €0.15, std. dev. €0.03)
- Gate Fees- (mean $\notin 30/t$, std. dev. $\notin 10/t$)
- Base digestate disposal costs- (mean $\notin 4/t$, std. dev $\notin 1.5/t$)
- FW availability
 - c1;mean 3000t, std. dev 500t and truncated at 3000
 - c2; mean 8500t, std. dev. 5000t and truncated at 15000
 - c3; mean 8500t, std. dev. 5000t and truncated at 30000

Values in Millions

Stochastic modelling conclusions

- Scenario c1 least impacted by changes in all parameters
- Scenario c2 and c3 highly sensitive to changes in FW availability
- Due to higher CAPEX and OPEX and the limited FW supply, scenario c3 remains unviable
 - unless large volumes of FW can be secured (which case significant profits can be realised)
- FW availability limits scale of on-farm PM and FW co-digestion
 - Working with local food processing facilities and waste management companies?
 - Alternative feedstocks

Conclusions

- Mono-digestion of PM not financially viable
- Farm of 521 sows co-digesting 3000t of FW per annum financially viable.
- Farm of 2,607 sows co-digesting 8,500 t of FW per annum was found to be financially viable, but strongly affected by market conditions
- FW availability limits the scale of on-farm biogas plants treating FW exclusively

Thank You

Conor Dennehy- c.dennehy2@nuigalway.ie

ACKNOWLEDGEMENTS

Funding for this Research was provided by Science Foundation Ireland (Ref: 12/IP/1519)

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

