Green Farm On-Farm Anaerobic Co-digestion of Pig Manure and Food residues

C. Dennehy¹, P. G. Lawlor², G.E. Gardiner³, Y. Jiang¹ and X. Zhan¹

¹Department of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway ²Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Co. Cork, Ireland ³Department of Science, Waterford Institute of Technology, Ireland

Agenda

- Drivers for Anaerobic Digestion
- Barriers to Anaerobic Digestion
- Food Residues and Manure Co-digestion
- Project Aims
- Results Thus Far
- Future Work

Anaerobic Digestion- Regulatory Drivers in Ireland- Greenhouse Gas Mitigation

• Average EU contribution of agriculture is 9%.

On Farm Anaerobic Digestion-Barriers Thus Far

- REFIT Ireland 15c kWh vs ROCs in N. Ireland 28c
- Complex planning process
- Low methane yield from manure alone
 - Digestion of manure and other agricultural feedstocks (codigestion) to increase methane yields investigated.
 - Mixing silage with manure increased methane yields; silage too expensive.

Manure and Food residues Co-digestion

Food residues -high biogas yield-unstable Manure- low biogas yields- excellent buffer Co-digestion results in significantly higher methane yields

Additional revenue stream for farmers in the form of gate fees

- Reduce GHG emissions from Agriculture
- Increase renewable energy provision
- Non-landfill management route for food residues

Department of Civil Engineering

Green Farm Project

Assess the economic and environmental viability of the concept of on-farm anaerobic co-digestion of pig manure and food residues

Progress Thus Far

- Batch experiments to assess methane generation rates of food waste and pig manure to find what mix is best
- Semi continuous 10L digesters operating in lab in order to identify best operating conditions
- Digestate being analysed for pathogen removal rates, heavy metal content, chemical composition

Reactors

Department of Civil Engineering

Semi Continuous Experiment-Methane Yields

Energy Yield Thus Far

- Maximum methane yield achieved thus far approx. 0.8L/L/d when mixing 60% food residues and 40% pig manure (volatile solids basis).
- For a small 100m³ plant

• Economically feasible?

Next Steps

- Identify optimal operating conditions for maximum gas yield
- Assess the effects of the pre-treatments required by the ABP regulations on gas yield and digestate quality
- Operate mesoscale reactor and develop mathematical model for predicting gas yields
- Assess how changing operating conditions affect microbial populations within digesters
- Assess overall feasibility of concept through life cycle analysis

Department of Civil Engineering

Funding for this study was provided by Science Foundation Ireland (Ref: 12/IP/1519).

