How does urea and protected urea compare to CAN for spring barley production

L.Roche^{1,2}, P.J. Forrestal¹, R. Hackett, G.Lanigan¹,K.G. Richards¹, L.J Shaw², D.P. Wall¹

In the fait when he had the

¹Teagasc, Crops Environment and Land Use Programme, Johnstown Castle, Wexford, Ireland ²University of Reading ³ Teagasc, Crops Research Centre, Oak Park, Co.Carlow

Agriculture, Food and the Marine Angline Talmhaíochta, Bia agus Mara

Background

- Greenhouse gas emission (GHG) reduction targets
 - Agriculture is responsible for 33% of GHGs
 - N fertiliser contributes to GHGs
- Ammonia emission reduction targets
 - Agriculture is responsible for 98% of ammonia emissions
 - Urea contributes to ammonia emissions
- Water Quality
 - Losses of N fertiliser is damaging to water quality
 - Requirements under Water Framework and Nitrates directives
- Food Wise 2025
 - Increase the value of primary production by 65%

Background – N Fertiliser

CAN

- 27% N
- 13.5% of N in CAN is nitrate and can be easily lost
- N losses as nitrous oxide (potent greenhouse gas) and nitrate leaching
- Using urea could reduce these losses

Urea

- 46% N
- Urea must go through two conversions before N converts to nitrate
- N loss as ammonia volatilisation (indirect greenhouse gas)
- Use of protected urea

Protected Urea

- Protected urea fertilisers are now available on the market in Ireland
- In this study urea + N-(n-butyl) thiophosphoric triamide (NBPT) is used
- The protected urea product used in these trials contained NBPT at 660 ppm.

Experimental Design

- Field site
 - Marshalstown, Co. Wexford free draining loam
 - >20 years spring barley production
- Randomised block design with 5 replicates of each treatment
- N fertiliser treatments used (N rate 150 kg N/ha)
 - Unfertilised control
 - CAN
 - Urea
 - Protected urea (Urea + NBPT)
- Fertiliser N applied in 2 splits
 - 1st split 30 kg N/ha applied at sowing
 - 2nd split 120 kg N/ha applied at mid-tillering
- Nitrous oxide emissions measured after N application
- Crop Harvested in late August each year

Results

Nitrous Oxide emissions

Ammonia Emissions

Ammonia Emissions

Nitrate Leaching

Grain Yield over 3 years (2013, 2014, 2015)

Average Grain Yield over 3 years

N uptake over 3 years (2013, 2014, 2015)

Average N uptake over 3 years

Average Protein % over 3 years

Relative Star rating of CAN, urea and protected urea

	CAN	Urea	Protected Urea
Cost of N	x x x t	☆☆☆☆☆	☆☆☆☆
Yield	☆☆☆☆☆	x x x x	x x x x x x
N Uptake	☆☆☆☆浗	x x x x	☆☆☆☆☆
Nitrous oxide	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$	$\bigstar \bigstar \bigstar \bigstar$	x x x x
Ammonia	☆☆☆☆	\bigstar	x x x
Leaching	\bigstar	x x x x	*Not available

Conclusions

- Greenhouse gas emissions
 - Overall N₂O was low from all fertilisers
 - Protected urea had lower emissions than CAN
- Ammonia Emissions
 - Ammonia loss from urea approximately 25kg
 - Protected urea reduced ammonia loss to < 5 kg
- Grain Yield
 - Grain Yield similar for all fertilisers
 - On average 0.3 t/ha more yield with protected urea
- N Uptake and Protein
 - N Uptake and protein highest with protected urea

Overall, using protected urea is a win-win for farmers and environment

Thank you for your attention

Acknowledgments

Walsh Fellowship Funding DAFM for funding through research stimulus fund All field and lab staff at Teagasc Oakpark and Johnstown Castle James Masterson for access to the field site

Agriculture, Food and the Marine An Bolon Talmhaíochta, Bia agus Mara

