Teagasc Gateways 16th November 2017

Recent developments in the analysis of residues in milk and dairy products.

Martin Danaher, Food Safety Department, Teagasc Food Research Centre, Dublin.

What are residues?

- Residues can arise in milk and milk products from the following sources:
 - Use of licensed veterinary drugs for treatment of dairy cows.
 - Illegal use of banned drugs or growth promoting agents.
 - Pesticides used at farm level to control insect infestations
 - Contaminants from Animal Feed or the environment e.g. mycotoxins or PCBS.
 - Chemicals used to ensure good hygiene at farm and processing plants.

Residue Categories & Sampling

Group	Drug Class	Milk
A6	Banned Drugs	X
B1	Antibiotics	X
B2a	Anthelmintics	X
B2b	Anticoccidials	
B2c	Carbamates / Pyrethroids	
B2d	Sedatives / Tranquilizers	
B2e	NSAIDs	X
B2f	Corticosteroids	

A6. Table 2 Regulation 37/2010

Chloramphenicol

Hazard: Aplastic anaemia

Potential carcinogenicity and genotoxicity (IARC=>group 2A)

Promotes the formation of the multi-resistance of pathogens

RPA: 0.3 µg/kg

Nitrofurans

3-amino-2-oxazolidinone (AOZ)

Hazard

carcinogenic and mutagenic properties

RPA: 1.0 µg/kg

B 1. Antibacterial substances

- ✓ Sulphonamides
- ✓ Tetracyclines
- ✓ Macrolides and lincosamides
- ✓ Aminoglycosides
- ✓ Beta-lactams
- ✓ Quinolones
- ✓ Amphenicols
- ✓ Peptide antibiotics

Methods of analysis of antimicrobials can be grouped in

- Microbiological=> fast screening, limited information
- Immunochemical=> rapid, selective and sensitive (e.g. ELISA)
- Physico-chemical=> accurate identification and quantification

Inhibition Assays Overview

- Low cost, suitable for industry and rapid
- No one method will do all
- Validation can be challenging.
- Results should be confirmed because tests are not quantitative
- Unsuitable for chloramphenicol and nitrofurans etc

B2a. Anthelmintics

U

Π

N

Π

C

Π

Φ

ທ

≻Control of

- Nematodes (roundworms)
- Cestodes (tapeworms)
- Trematodes (flukes)
- > 3 classes of drugs:
 - Benzimidazoles
 - Macrocyclic Lactones -
 - Flukicides
- Some drugs are teratogenic or neurotoxic
- Many products not licensed in lactating animals
- Detection: HPLC-UV/FLD and LC-MS/MS

B2a. Anthelmintics - Endectocides

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

B2b. Anticoccidials

- ➤Control/Treatment of:
 - Coccidiosis
 - Acute bovine respiratory • disease
 - Cryptosporidiosis ۲
 - **Babesiosis**
 - Isosporiasis
- Two main classes:
 - Ionophores
 - Chemical anticoccidials
- Some anticoccidials are cardiotoxic, neurotoxic

- Low LODs required for milk Detection: LC-MS/MS

B2b. Regulations

Commision Regulations and Directives

- ➢ No 1831/2003
- No 37/2010 pharmacologically active substances
- No 124/2009 MLs for anticoccidials in food resulting from unavoidable carryover in non-target feed

Licensed Feed Additives

Lasalocid Na Narasin Salinomycin Na Monensin Na Semduramycin Maduramycin Maduramycin Robenidine Decoquinate Halofuginone Nicarbazin Diclazuril

B2c. Carbamate and Pyrethroids

B2e. NSAID's &

Heterogeneous drug group:

- 1. Salicylic acid derivatives (aspirin)
- 2. Propionic acid derivatives (ibuprofen, ketoprofen)
- 3. Pyrazoles derivatives (phenylbutazone)
- 4. Aniline derivatives, including anthracilic and nicotinic acid derivatives (flunixin)

B2f. Other

- Corticosteroids
- Quinoxalines
- Amitraz

Prednisolone

Dexamethasone

Might be used in cocktails with other ilegal substances in animal feeding (betaagonists/anabolic steroids)

Analytical Developments

Improving the throughput of veterinary drug residue analysis using vibrational shaking technology

QuEChERS Approach

Phase Separation

Automated shaking

- Ceramic homogeniser pellets are added to samples.
- Salts are added to samples at same time.
- Samples (n = 36) are placed in the shaker in the test tube racks (n = 3).
- Rack is clamped.
- Samples are shaken at 700 rpm.
- Instrument shaking time is adjusted to give the desired extraction efficiency.

 $\mathbf{A}_{\text{GRICULTURE AND}} \, \mathbf{F}_{\text{OOD}} \, \mathbf{D}_{\text{EVELOPMENT}} \, \mathbf{A}_{\text{UTHORITY}}$

Incurred samples study

Gaps in analysis: Improving chemical analysis of Beta-lactam antibiotics

β-Lactams usage in animal products

Penicillins and Cephalosporins:

 Oral, parenteral and intramammary administration

- Therapeutic use in ruminants, monogastrics and poultry
- Prophylactically at sub-therapeutic doses

Carbapenems:

• Not licensed in food-producing animals

Issues with current approaches

- No multi-residue LC-MS/MS methods incorporating cephalosporins currently available in Ireland
- Outsource of samples to other countries for confirmatory analysis
 - Long turnaround time
 - Degradation of samples during transport
 - Impact on integrity of results
 - Cost implications

Why LC-MS/MS?

- Required to identify and quantify the residues in non-compliant samples.
- Very sensitive, selective and specific.
- Gives very accurate and precise results.

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Method overview for milk

Chromatography conditions

Analytical column: Agilent Phenyl Hexyl column

Binary gradient of:

Mobile phase A: HCOOH 0.01% + 0.2 mM

ammonium acetate in water

Mobile phase B: HCOOH 0.01% in acetonitrile

Column temperature: 30°C Flow rate: 0.4 mL min⁻¹

Injection volume: 10 µL

Run time = 12 min

Analysis of cefquinome in dairy products

Matrix	Fortification level (µg kg⁻¹)	Mean ± SD (µg kg⁻¹)	RSD(%)	Trueness(%)			
	Liquid samples (samples = 11; days = 5)						
Milk	4.0	4.1 ± 0.15	3.8	101			
	250	258 ± 9.8	3.8	103			
Skimmed milk	4.0	4.0 ± 0.26	6.4	100			
Skimmed milk	250	251 ± 8.8	3.5	100			
Buttermilk	4.0	3.5 ± 0.33	9.3	87			
	250	226 ± 7.9	3.5	91			
Whey	4.0	3.5 ± 0.20	5.8	86			
	250	214 ± 5.6	2.6	85			
Groom	4.0	4.0 ± 0.20	5.1	99			
Cream	250	256 ± 9.2	3.6	102			
Solid samples (samples = 11; days = 3)							
Gund	4.0	3.6 ± 0.25	6.8	90			
Curd	250	237 ± 5.5	2.3	95			
Cheese	4.0	3.9 ± 0.34	8.6	98			
	250	244 ± 7.5	3.1	97			
Dutter	4.0	3.9 ± 0.16	4.1	99			
Butter	250	259 ± 7.2	2.8	104			

Spiked studies

Animal treatment studies

Emerging residues: Analysis of Chlorate & Perchlorate Residues

Monitoring data infant formula

 Concern because chlorates are a competitive inhibitor of iodine uptake in the thyroid, making its presence in food a potential health concern for vulnerable groups, particularly infants.

Proposed Temporary MRL

- 0.200 mg/kg for chlorate in milk (includes sodium, potassium and magnesium chlorate expressed as chlorate).
 - The default MRL of 10 µg/kg applies to infant formula "as consumed" (*Article 10 (1) of CD 2006/141*)
 - Chlorate residues are present at levels that frequently exceed the default MRL of 0.01 mg/kg (10 µg/kg) and that the levels vary depending on the source and the product.

Interpretation for IF

MRL for Reconstituted IF = 0.01 mg/kg

Reconstituted IF = 25.2 g powder + 180 mL H2O= 25.2 g powder + 180 g H2O

Dilution factor (w/w) = (25.2g + 180 g)/25.2 g = 8.14

0.01 mg/kg Recon. IF ~ 0.0814 mg/kg IF

- Very small polar molecules, which make it difficult to achieve selective analysis.
- Need selective detection i.e. MS or MS/MS to achieve low levels of detection.
- Due to high water solubility speciality chromatographic columns or ion chromatography is required.

Sample preparation for milk

Chlorate Chromatography

Matrix Effects study (raw milk)

		ME%	
			Chlorate
Sample No.	Chlorate	Perchlorate	$0.2 \pm 0.2 (0/)$
1	4.4	-11.3	-0.2 to 9.2 (%)
2	0.9	-15.2	Slight Suppression
3	4.7	-19.8	5 5 11
4	3.4	-16.5	
5	3.4	-24.9	
6	0.8	-17.0	
7	9.2	-27.2	
8	5.1	-15.6	
9	3.3	-16.1	
10	2.2	-8.7	
11	5.5	-17.7	
12	0.9	-18.7	Perchlorate
13	3.3	-16.2	
14	2.4	-26.4	-27.2 to -8.7 (%)
15	0.3	-25.0	Enhancement
16	2.0	-19.9	
17	-0.2	-12.2	
18	3.5	-21.4	
19	5.9	-18.1	
20	7.2	-11.4	
21	2.1	-14.0	
			εαξαsc

Performance over 10 runs

	Chlorate			Perchlorate			
Run No.	R2	Accuracy	Slope	R2	Accuracy	Slope	
1	0.9996	94-109	0.059089	0.9996	95-106	0.169937	
2	0.9995	95-105	0.059293	0.9995	91-112	0.169796	
3	0.9995	95-107	0.056390	0.9995	95-105	0.163613	
4	0.9978	95-107	0.055180	0.9997	96-105	0.159428	
5	0.9968	80-109	0.057818	0.9999	96-105	0.166732	
6	0.9996	93-110	0.056007	0.9998	91-107	0.166914	
7	0.9996	96-106	0.056731	0.9998	96-107	0.164428	
8	0.9998	95-105	0.058336	0.9998	97-104	0.162944	
9	0.9998	97-105	0.059273	0.9993	87-108	0.164696	
10	0.9999	97-103	0.059349	0.9996	94-123	0.165849	

Accuracy and Precision

		Between days study (n =2 x 10d)			
Analyte	Fortification Level (µg/kg)	Mean (µg/kg)	S.D. (µg/kg)	CV (%)	Trueness (%)
Chlorate	2	2.04	0.18	8.6	92-112
	100	99.0	2.5	2.5	95-105
Perchlorate	2	2.04	0.13	6.2	95-108
	100	98.8	1.46	1.48	94-101

Milk Comparison (inter-lab)

Chlorate Milk Powder QC

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Acknowledgements

Food Institutional Research Measure (DAFM) for funding some of this research (contract 13/F484)

Mohammad Hossain Melissa Di Rocco Damien Mooney Mary Moloney Kieran Jordan Johan Scollard

