

- Manure and it's Management focus on cattle slurry Dr. Patrick Forrestal Soils, Land Use and Environment Dept. Crops, Environment and Land Use Programme Teagasc, Johnstown Castle,
- Co. Wexford

Manure management is ultimately about growing a crop with the nutrients Meeting the challenge of getting the correct nutrient rate on each field for each crop

Land is expensive – if we don't get nutrient rate correct every time it is costing money

Questions

- 1. What's the target crop?
 - Determines the nutrient maintenance rate

2. What's the soil status?

- Determines the nutrient build-up rate
- 3. What's the slurry nutrient content?
 - Determines application rate/volume
 - Determines purchased mineral fertiliser rate
- 4. What's the application method?
 - Affects the retained N

5. How can I get the rate right? Example

Effect of target crop & soil status on P & K requirement

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Soil Status

Where?

Return to silage ground guided by soil test

But why?

easasc

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Index	Status	P (mg/l)	K (mg/l)	P & K fertiliser plan
1	Very low	<3.0	<50	Build up + Maintenance
2	Low	3.1-5.0	51-100	Build up + Maintenance
3	Adequate	5.1-8.0	101-150	Maintenance
4	High	>8.0	>150	No P/K fertiliser

Nutrient variability

Nutrient variability?

- Large variability between farms Between high and low:
- \mathbf{NH}_{4} : <u>17</u> fold difference
- P: <u>11</u> fold difference
- K: <u>15</u> fold difference

For comparison imagine going to the supplier a to buy a tonne of fertiliser – let's say 10:10:20

BUT: no label and the information is, well its somewhere between:

1:2:3 14:12:24

How can I know the "label" for my slurry?

- 1. Collect sample after tank agitation, safest from the spreader
- 2. Place in tall container
- 3. Place hydrometer in and allow time to find level/dilute

Estimate using dry matter Slurry Hydrometer

Take your DM value and read off table below Print yours! Google Teagasc Green Book it's on page 46!

Table 9-8: Typical available N, P, and K applied (kg/ha) ^{1, 2, 3, 4} depending on cattle slurry dry matter content and application rate ⁴												
Slurry Application Rate	4% DM Slurry Slurry			8% DM 10% DM Slurry Slurry								
	N ²	P ³	K³	N ²	P ³	K ³	N ²	P ³	K³	N ²	P ³	K ³
11 t/ha	5	4	23	8	5	32	10	7	40	12	8	49
22 t/ha	11	7	47	15	10	64	20	13	80	24	16	97
33 t/ha	16	11	70	23	15	95	30	20	(121)	37	25	146
44 t/ha	21	15	93	31	21	127	40	27	161	49	33	195
55 t/ha	27	18	116	38	26	159	50	33	201	61	41	244

How can I know the "label" for my slurry?

Use hydrometer/estimate and cross check with lab

BUT is it expensive?

- About €60 per sample
- 16 weeks storage for 90 dairy cows is 475 t of slurry
- If you were buying €2000 of fertiliser would you accept no nutrient label?

Value of 90 dairy cow 16 weeks stored slurry

Survey

Have you ever had the nutrient content of your slurry analysed in a lab? (n=155)

Slurry N, P, K – Things to know

	Ν	Ρ	K
Gaseous loss phase?	Yes	<u>No</u>	No
Atmospheric conditions?	Yes	No	No
Application method?	Yes	No	No
Spread pattern?	Yes	Yes	Yes

Application method – affects N loss/ N retention

Splash plate

Loss of 34 to 83% of available N

Average loss: 54%

Average retained: 46%

Trailing shoe

Loss of 11 to 68% of available N

Average loss: 35%

Average retained: 65%

N: Application timing

Growth rates increasing strong nutrient uptake

Bridge gap to spring growth with storage – Nervous about spreading bought fertiliser? Think about slurry nutrients the same way

<u>On average</u>

N loss as NH3

lower

Cattle slurry **Nitrogen (N)** application rate at **33t/ha** (3000gal/ac) as affected by <u>slurry dry matter</u>, <u>method of application</u>

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Targeting slurry P & K to Index 1 & 2 soils Why?

- The slurry P & K is already on the farm – target to where it will give the most benefit
- Only 50% of slurry P is counted at index 1 & 2 compared to 100% of the mineral P
- Target index 1 & 2 with slurry to increase farm mineral fertiliser P allowance

Getting Phosphorus (P) right

 $\mathbf{A}_{\mathrm{GRICULTURE}}$ and $\mathbf{F}_{\mathrm{OOD}}$ $\mathbf{D}_{\mathrm{EVELOPMENT}}$ $\mathbf{A}_{\mathrm{UTHORITY}}$

Getting Potassium (K) right

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

In this example 1st cut at Index 3

	Ν	Р	K
Maintenance	125	20	125

*Typically no more than 90 kg K/ha applied at closing for silage

Key Messages

- Need a field by field prescription for success
- a) Test soil
- b) Test slurry
- c) Use low emission spreader to retain N
- d) Balance slurry with <u>correct</u> mineral fertiliser

How are we spreading slurry at the Johnstown Castle Dairy and Beef farms, and Why?

Low emission spreaders used

- More N retained to grow grass
- Reduced farm fertiliser N bill
- Less grass contamination option to spread grazing paddocks
- More even application of slurry N, P, K
- Less odour
- Helping to meet the national Ammonia emission reduction commitments

Ammonia NH₃ (escaped N)

Agriculture 98%

National Emissions Ceiling Directive 1% below 2005 to 2030 5% below 2005 from 2030 onwards

