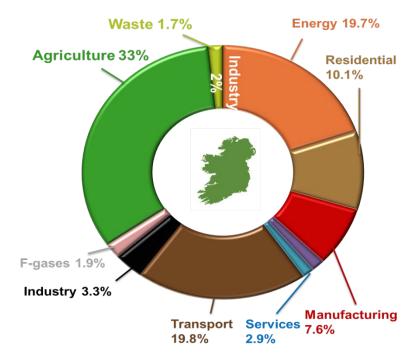
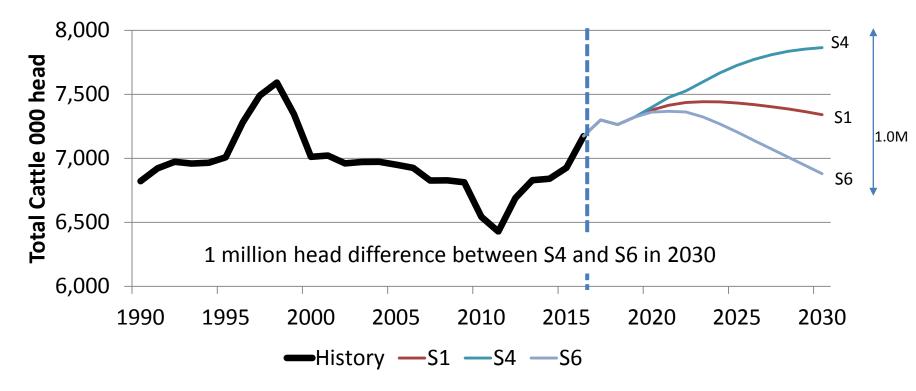
Climate Change – what agriculture can do

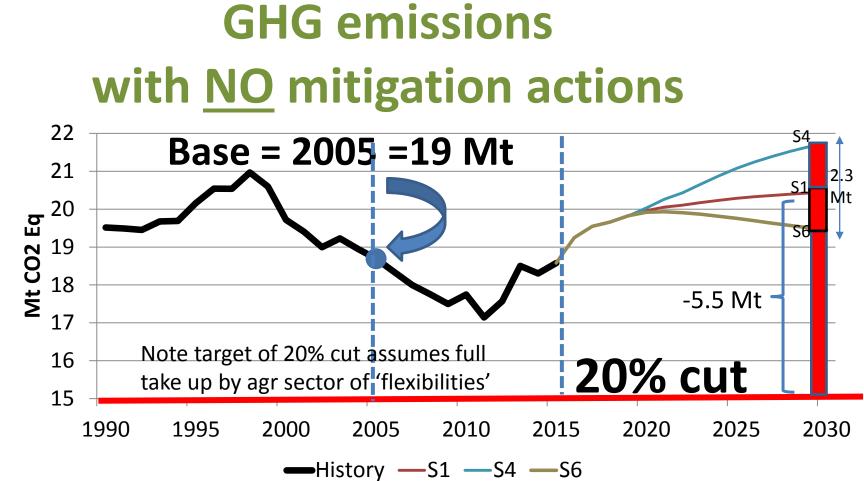
Professor Gerry Boyle, Director Teagasc Presentation to Briefing for Oireachtas Members and MEPs October 24th 2018


2018 – a very difficult year

- Several extreme weather events ... indicative of *Climate Change* (CC)
- Challenging fodder situation but highly variable
- Substantial additional costs; reduced incomes; and stress
- What can agriculture do to combat CC?


Background

- Irish agriculture comprises
 - 33% of Irish GHG emissions
 - 45% of Irish *non-Emissions Trading Scheme* (ETS) GHG
- GHG targets
 - 20% emissions reduction by 2020
 - 30% non-ETS reduction by 2030 (EU 2030 Effort Sharing) with up to 10% flexible mechanisms allowable due to LULUCF credits and transfers from ETS



Total Cattle Population: Scenarios

Three Mitigation Pathways to 2030

- 1. Reduce Agricultural Methane and Nitrous Oxide
 - lower emissions from animals, animal waste and fertiliser
- 2. Sequester Carbon (LULUCF)
 - Via land use change and forestry
- 3. Energy efficiency & biofuels and bioenergy production
 - to reduce overall energy usage on farms
 - to displace fossil fuel emissions

1. Agricultural Abatement

Measure		Mean ann. saving	
		2021-30	
1.	Improved Beef Maternal Traits (CH ₄)	0.03 Mt	
2.	Beef Genetics: live-weight gain (CH ₄)	0.06 Mt	
3.	Dairy EBI (CH ₄)	0.43 Mt	
4.	Extended grazing (CH_4)	0.07 Mt	
5.	Nitrogen-use efficiency (N ₂ O)	0.10 Mt	
6.	Improved animal health (CH ₄)	0.10 Mt	
7.	Sexed Semen (CH ₄)	0.02 Mt	
8.	Inclusion of Clover in pasture (N ₂ O)	0.07 Mt	
9.	Change Fertiliser Type* (N ₂ O)	0.52 Mt	
10.	Reduced crude protein in pigs* (N ₂ O)	0.05 Mt	
11.	Draining wet mineral soils (N ₂ O)	0.20 Mt	
12.	Slurry amendments* (CH ₄)	0.03 Mt	
13.	Adding Fatty Acids to dairy diets (0	CH ₄) 0.03 Mt	
14. Low-emission slurry spreading* (N ₂ O) Total		0.12 Mt 1.85	

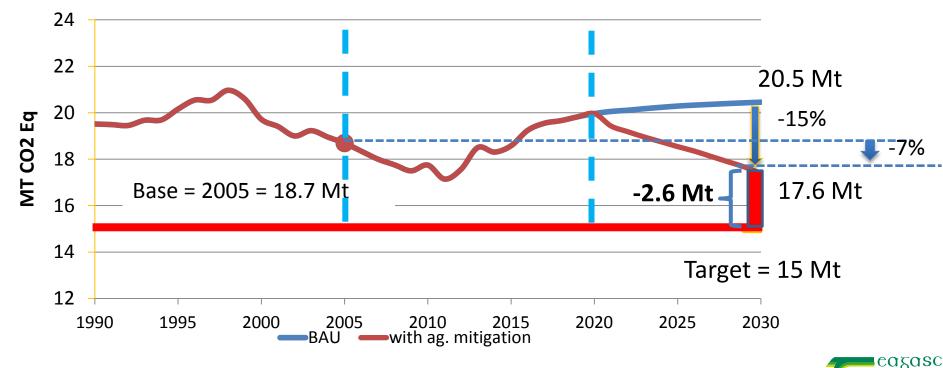
Saving

2030

* Double dividend as it also reduces ammonia emissions

2. Land-Use Sequestration

Measure	Mean ann. saving 2021-2030	Saving 2030
15. Grassland Mgt.	0.26 Mt	
16. Water table mgt. of org. soils 0.44 Mt		
17.Forestry	2.10 Mt	
18. Tillage Mgt – Cover crops	0.10 Mt	
19. Tillage Mgt – Straw incorp.	0.06 Mt	\frown
Total	2.96	3.89

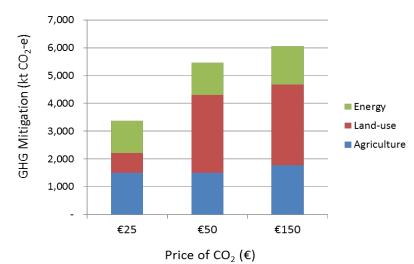

3. Energy Efficiency, Bioenergy and Biofuels

Measure		Mean ann. saving	Saving 2030
20.	Energy efficiency on farm	2021-30 0.03 Mt	
21.	Wood Biomass* for energy	0.76 Mt	
22.	SRC & Miscanthus for Heat	0.11 Mt	
23.	SRC for Electricity	0.10 Mt	
24.	Anaerobic Digestion**	0.22 Mt	
25.	Biomethane	0.15 Mt	\frown
Total		1.37	2.03

*thinnings and sawmill residues **slurry and grass for CHP

ann.	Saving
g	2030
30	
Лt	
Лt	
/lt	
/lt	
/lt	
/lt	\frown
,	(2.03)

Impacts on 2030 GHG targets S1 Scenario <u>with</u> mitigation


AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

10

Associated Costs

GHG mitigation

- Most (>85%) mitigation < €50/t CO₂e
 - Agricultural Mitigation generally cheaper
 - Land Use and Energy more expensive
- Farm level agricultural efficiencies
 - e.g better breeding
 - can potentially <u>save</u> €136m p.a.
- Technical measures
 - cost €157m p.a. for Ag, Forestry and Land Use
- Bioenergy costs
 - calculated at €58m p.a.
 - but higher uncertainty about feasibility

- WARNING: Across the world there is a poor take up of GHG mitigation actions by the ag sector
- Without mitigation, Ag GHG emissions are likely to increase
 - Mainly due to increased dairy production
 - Which would lead to a larger cattle population
- Significant mitigation potential exists
 - But these solutions exist on paper only
 - Significant advisory input required plus
 - Policy measures to encourage uptake of mitigation measures

