

Food formulation & microbes for controlling flavour development: case studies of starter cultures in emulsions

Dr Konstantinos (Kostas) Gkatzionis

Associate Professor

Department of Food Science and Nutrition, University of the Aegean, Greece

School of Chemical Engineering, University of Birmingham, UK

2019 – Present University of Aegean (& UoB)

2013-2019 University of Birmingham

2009-2012 University of Northampton

2008 KTP Associate

PhD – Division of Food Science

2004-2005 Food industry - technology & quality control

BSc Food Science - Greece

University of the Aegean

- Public university founded in 1984
- Combines campuses across six islands of the Aegean Sea.
- Administrative headquarters in Lesvos Island
- Five Schools and 18 Departments
- > 10,000 active students
 - ~ 8,000 undergraduate
 - ~ 2,000 postgraduate
 - ~ faculty 500
- Department of Food Science and Nutrition at Lemnos island

...we consume based on branding

...what is the share of microbes in fermented food

DNA-based microbial analysis of the yeasts in Stilton

white core

Example of typical fermented food:

- Starter culture
- Secondary culture
- Links of its microbes to flavour
- Diverse food structure
- Principals that apply to many fermented foods

Flavour

Interactions in models

Yeasts (secondary microflora)

- Kluyveromyces lactis
- Debaryomyces hansenii
 - Trichosporon beigelii
 - Yarrowia lipolytica

Starter mould
Penicillium roqueforti

Sensory

GC-MS

Comparison of models and real cheese aroma - GC-MS analysis

Sensory - Flash profile

Effect of quantity – Aroma profiles of Kluyveromyes lactis in models

Conclusions...

Interactions of starter and secondary culture in fermented food are like...

There is a starter culture

- this is needed

There is a secondary culture

- this is desirable
- we do not control it

Interesting things happen when both are ensured

- ...however, they can not co-exist due to competing with each other

Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications

Gerald Muschiolik, Eric Dickinson

Comprehensive Reviews in Food Science and Food Safety 🙃 Free Access

Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications

Gerald Muschiolik, Eric Dickinson

Liquid	Dried	Application
X		Low-calorie cream or mayonnaise
X		Double emulsion containing gelling polysaccharide and encapsulated flavor, applicable to low-fat salad dressing or margarine-like spread
X		Formation of W/O/W emulsion by diluting O/W microemulsion (with nonmiscible flavoring substances), suitable for food flavoring purposes
X		Carrier for vitamins in sweets (40% sugar in W phase)
X		Replacement of milk fat in cheese
X		Carrier for sodium ascorbate in ultra-high temperature milk (3% DE in milk)
X		Carrier for CaCl2 in soybean milk in order to influence consistency
	X	Edible film with mechanical properties comparable to hydrophilic film, but with water vapor permeability
X		Carrier for omega-3 polyunsaturated fatty acids (chia essential oil) or ascorbic acid
X		Encapsulation of natural coloring agents for confectionery, fruit preparation, ice cream
X		Spread enriched with fish oil
	X	Powder with microencapsulated peanut sprout extract (containing high content of resveratrol)
X		Encapsulation of vitamin B12 to produce functional dairy products
X		Encapsulation of seasoning particles (4 to 25 μm)
	Х	Powdered additive for chewing gum with encapsulated aspartame to prolong perception of sweet taste
X		Pork backfat replacers in meat gel/emulsion model systems with olive oil as lipid phase
X		Bittern solution (MgCl2) in W1 phase as a coagulant for tofu preparation
	Х	Encapsulation of xylitol and menthol in chewing gum to prolong cooling effect and flavor perception duration
X		Encapsulation of curcumin and catechin in beverage systems
	Χ	Encapsulation of grape seed extract (procyanidins)
	Χ	Encapsulation of saffron extract
	Χ	Microencapsulation of fish oil
x		Tailoring oral destabilization of DE with NaCl in W1 in order to enhance saltiness perception (application for sodium reduction in food)
X		Replacement of oil by water droplets in oil phase to manipulate sensory response (intensity of fat-related attributes)
X		Encapsulation of caffeine in yogurt
X		Replacement of beef fat in meat emulsion system
Х		Encapsulation of probiotic bacteria L. salivarius (W1 consists of solid-phase (S) dried cells)
X		Replacement of pork fat in frankfurters with DE containing perilla oil (high content of α -linolenic acid)
X		Beverage with 1% DE as clouding agent, with 60% sucrose as weighting agent in W1 phase, and orange oil or medium-chain triglycerides as O phase
X		Enrichment of skim milk with sunflower oil
X		Encapsulation of Lactobacillus delbrueckii

Double emulsions for microbiological control

Leaking OR Release?

RSC Advances

View Article Online
View Journal | View Issue

CrossMark
Click for updates

Cite this: RSC Adv., 2015, 5, 105098

PAPER

Understanding and controlling the release mechanism of Escherichia coli in double $W_1/O/W_2$ emulsion globules in the presence of NaCl in the W_2 phase†

Hani El Kadri, a Tim Overton, ab Serafim Bakalisa and Konstantinos Gkatzionis*ab

RSC Advances

PAPER View Article Online
View Journal | View Issue

CrossMark ← click for updates

Cite this: RSC Adv., 2016, 6, 93694

Modulating the release of Escherichia coli in double $W_1/O/W_2$ emulsion globules under hypo-osmotic pressure†

Hani EL Kadri, ^a Ramazan Gun, ^a Tim W. Overton, ^{ab} Serafim Bakalis ^a and Konstantinos Gkatzionis ^{*ab}

Soy production Moromi production model system SOT GRITS Conventional Method Wheat Soybeans Steam Roast Starter Mould spores: Aspergillus oryzae Salt Soln. + 2.5 volume 20% NaCl Moromi Mash Hydrolysis Salt-tolerant lactic acid bacteria and Fermentation Natural fermentation: Many...but always ... Tetragenococcus halophillus 6 to 8 months Lactic Acid and Yeasts Alcohol Fermentation Many...but always ... Zygosaccharomyces rouxii Filtration Pasteurization Soy Sauce

Aroma production in soy sauce model system

PCA of five moromi samples and aroma compounds after 30-days

.... antagonism was observed as T. halophilus only proliferated (3 log increase) in the presence of Z. rouxii, while Z. rouxii growth was suppressed by 4 log in concurrence with pH increase to 7.31

Microfluidics and W₁/O/W₂ double emulsion with microbes

with Dr Daniele Vigolo, School of Chemical Engineering, UoB

Chips with thermal control intergraded – with Dr Daniele Vigolo, School of Chemical Engineering

Microbes as part of food intake – interactions beyond food

Progress | Published: 24 September 2012

The interplay between the intestinal microbiota and the brain

Stephen M. Collins [™], Michael Surette & Premysl Bercik

Nature Reviews Microbiology 10, 735-742 (2012) | Download Citation ±

- The demand for fermented food will grow and opportunities for innovation too.
- Need for tailored food formulation and structure to facilitate complex microbiology.
- New claims like '% of microbes or fermented food' in final products may become part of branding... similar to '0 trans', 'fair trade', 'low salt' etc.
- Microbial composition of food may become part of labelling, like sugar, protein, water content etc.
- There will be need to link (i) food fermentation, (ii) resulting physicochemical properties of food and (iii) consumer responses and perception

Dr Konstantinos Gkatzionis

kgkatzionis@aegean.gr

Associate Professor

Department of Food Science and Nutrition School of the Environment University of the Aegean Metropolite loakeim 2 GR 81400 Myrina, Lemnos Greece

