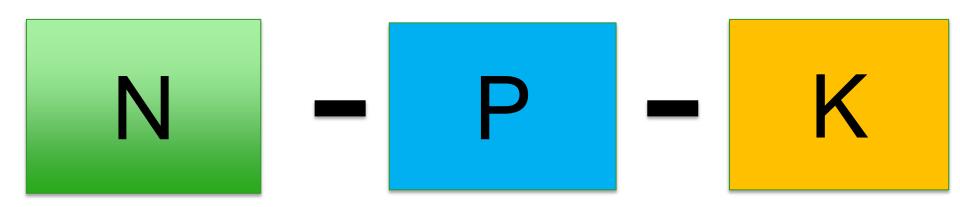
Managing Cattle Slurry Efficiently

Mark Plunkett,
Teagasc,
Johnstown Castle



Utilising Major Cattle Slurry Nutrients

Organic fertilisers generated on farms can effectively replace a proportion of chemical fertilisers

Fertiliser Replacement Values

Available Nutrient Values

Nutrient	kg/m³	units/ 1,000gals
N	1.0	9
Р	0.5	5
K	3.5	32
DM%	6.3	6.3

Factors to Consider

- ✓ Slurry dilution with water?
- ✓ Slurry DM^{\$} 10 fold variation
- ✓ Testing slurry nutrient levels

\$DM, dry matter %

Slurry Dilution vs. N-P-K Value

The effect of slurry DM on the N, P & K Values of cattle slurry					
D M %	N kg/m³ (units/1,000 gals)	P kg/m³ (units/1,000 gals)	K kg/m³ (units/1,000 gals)		
2	0.4 (4)	0.21 (2)	1.4 (13)		
4	0.7 (6)	0.35 (3)	2.3 (21)		
6	1.0 (9)	0.5 <i>(5)</i>	3.5 (32)		
7	1.1 (10)	0.6 (6)	4.0 (36)		

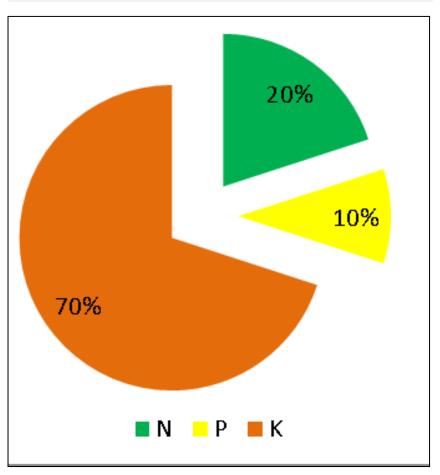
Example: Cattle Slurry @ 33m³/ha - First Cut Grass Silage					
Nutrients	Crop Req. (kg/ha)	Nutrients applied			
		4% DM Slurry	7% DM Slurry		
Р	20	12 (-40%)	20		
K	125	76 (-50%)	120 (-4%)		

Nitrogen (N) in slurry

Organic N

- 50% Organic N
- Not immediately plant available
- Becomes available over time through N mineralization in the soil

Mineral N


- 50% Ammonium N
- Plant Available N in season of application
- Risk of loss depends on:
- Timing of application
- Weather conditions
- Application Method
- N recovery 15 to 40%

Where should I spread slurry?

Where can I best maximise the value of slurry nutrients?

Nutrient Profile

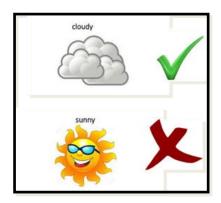
Crop P & K Needs

- Soil Analysis
- Fertiliser Plan
- Crops
 - Grass Silage
 - Slurry Balanced Fertiliser
 - Adjust slurry application rate based on slurry DM

Reducing slurry N losses

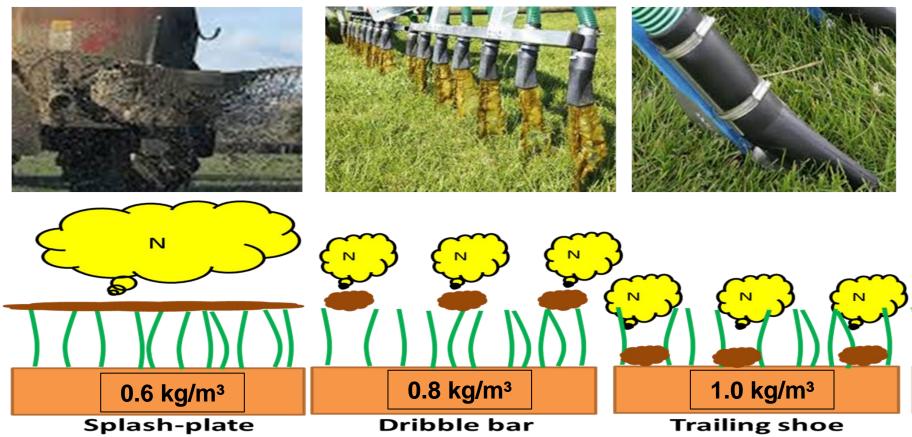
Best practice for reducing ammonia-N volatilisation loss

Timing of App.


- Application in Spring
- High crop N demand
- Maximise N recovery
- Aim to have 75% slurry applied by end of April

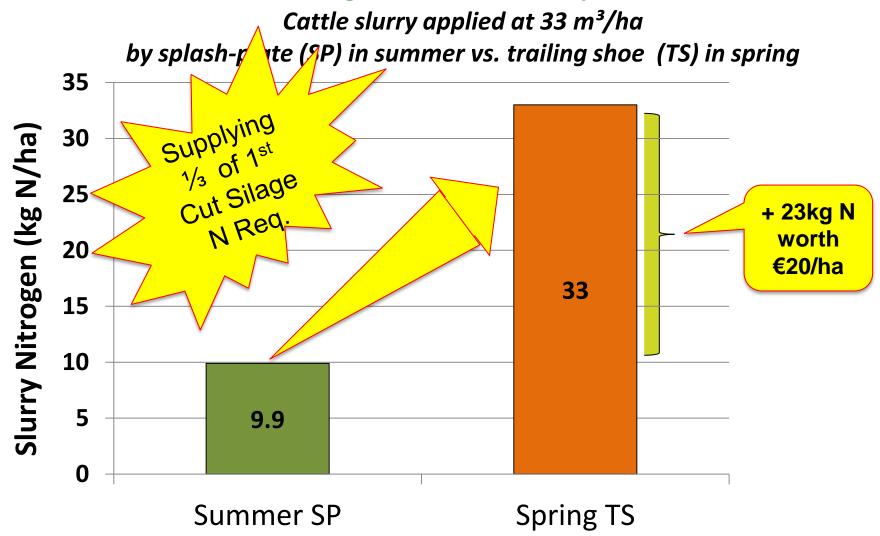
The Sign Post Series - Managing Cattle Slurry Efficiently

Weather


- Apply slurry during
 - Cool, damp, overcast or even misty conditions
- Avoid slurry application
 - Warm, dry, sunny weather

Reducing slurry N losses

N value with different slurry application methods


Dribbler Bar / Trailing Shoe Benefits

- Less grass contamination / More precise app. of nutrients
- Increased Flexibility -Spread on higher grass covers
- Wider window of application / better soil condition

Fertiliser replacement value?

Maximising the value of slurry N

Planning Slurry Applications

Where? When? How? Rate? Use LESS **Spring better** N-P-K 9-5-32 than summer application €25 method Cool, Damp **Conditions Adjust slurry** Crop P & K application requirements rates based **Target fields** on DM% with highest

