The Signpost Series

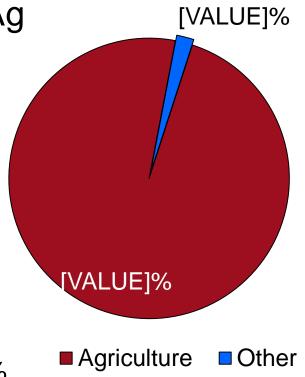
'Pointing the way to a low emissions agriculture'

Reducing Slurry Emissions

Dr David Wall

Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co Wexford

Ammonia – The Challenges

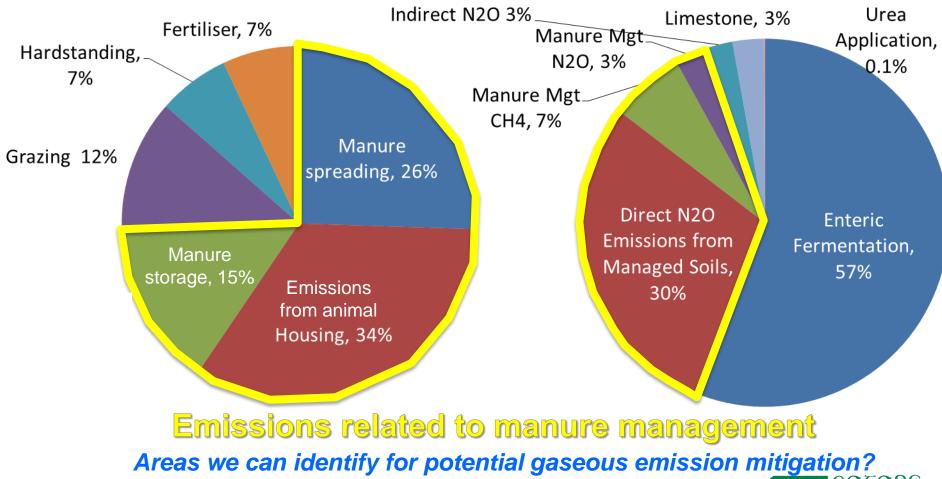

Ammonia

Ammonia Source

- 98% of ammonia emissions from Ag
 - 1% reduction to 2030
 - 5% from 2030 onwards
 - Ammonia mitigation can be synergistic or antagonistic with GHG mitigation

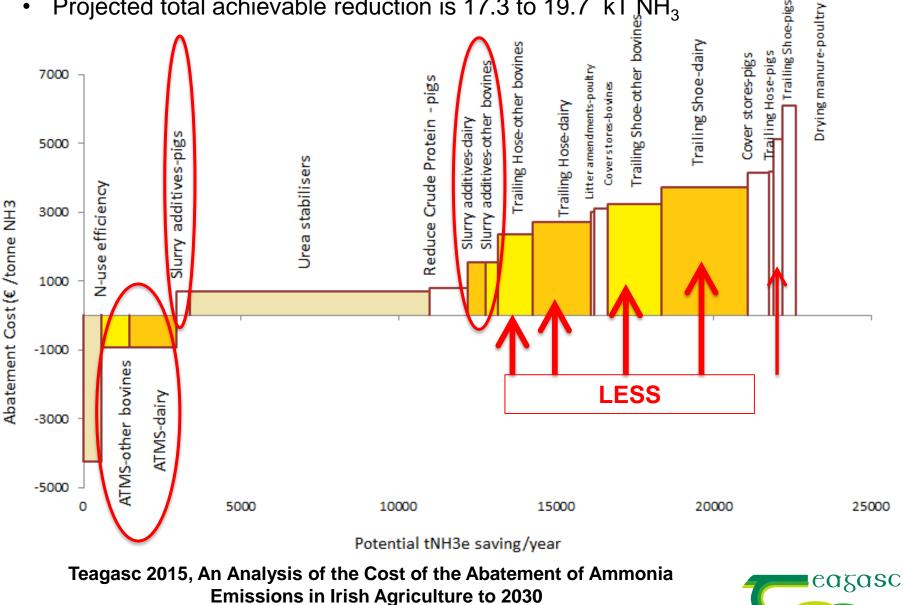
Ammonia Policy

- EU Clean Air Package 2030
 - EU ammonia Ag. emissions reduction 27%
 - Ireland ammonia Ag. emissions reduction 5%



IRL Ammonia & GHG emissions profile

Ammonia


GHG

Ammonia MACC

Projected total achievable reduction is 17.3 to 19.7 $kT_{M}NH_{3}$

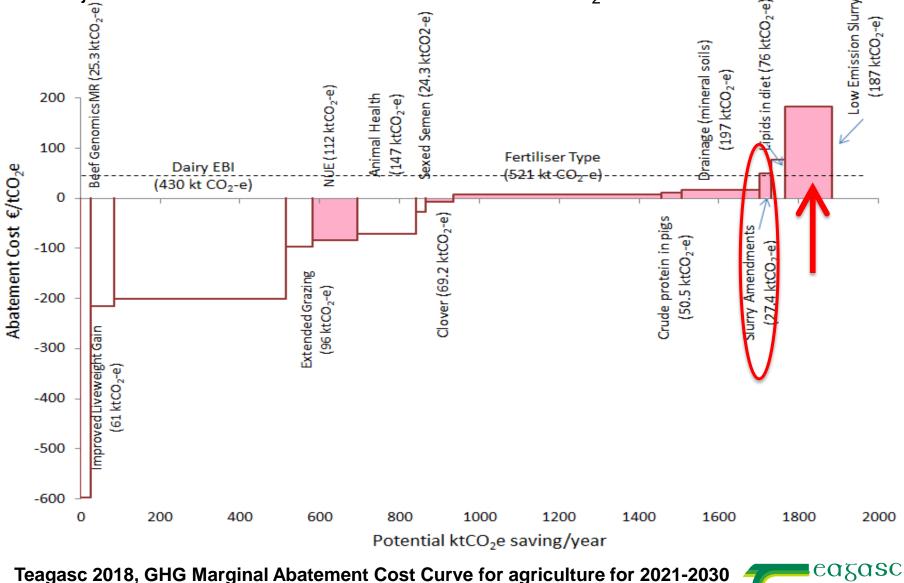
D.P. Wall Reducing Slurry Emissions Teagasc Signpost Series

4

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Potential Management Solutions Iowering <u>Ammonia</u> emissions

kT NH₃ abated


Protected urea (switch 50% CAN to Protected Urea*)
 7.7

Low-emission slurry spreading (dairy slurry)	2.7	Sea .
Low-emission slurry spreading (non-dairy slurry)	1.7	tar-
Alt. time manure spreading (dairy slurry)	1.5	
Alt. time manure spreading (non-dairy slurry)	0.91	
Boduco Crudo protoin pigo	4.0	
 Reduce Crude protein pigs 	1.3	
 Reduce Crude protein pigs Increase Nitrogen use-efficiency 	1.3 0.57	
	_	

Greenhouse Gas MACC Agricultural mitigation

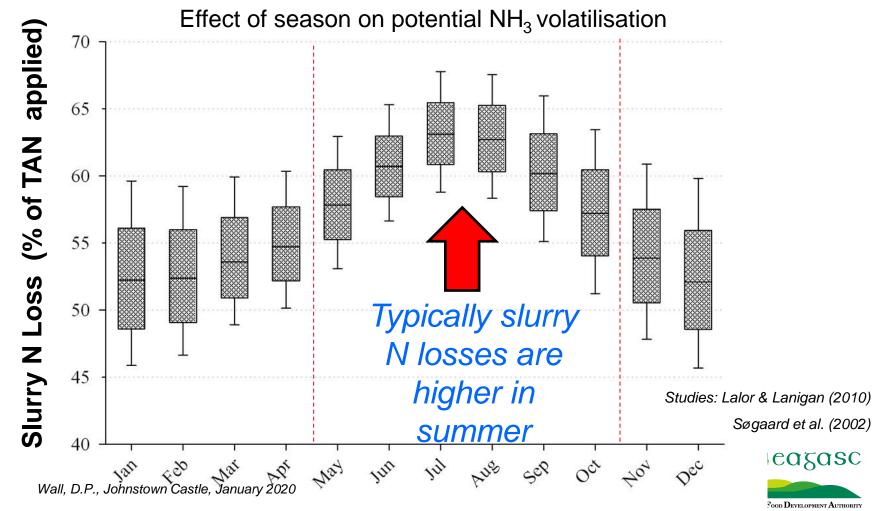
Projected total achievable reduction is 3.06 MT CO₂-e in 2030

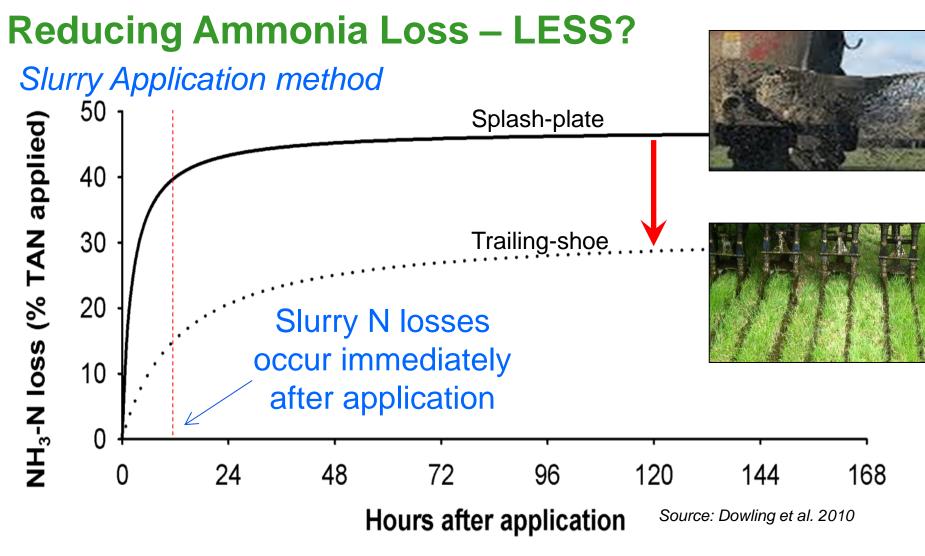
D.P. Wall Reducing Slurry Emissions Teagasc Signpost Series

6

Potential Management Solutions Iowering agricultural <u>GHG</u> emissions Mitigation Mt CO₂e

- ✓ Soil & N management mitigation options $\sim \frac{1.2}{1.2}$
 - Protected urea (switch 50% CAN to Protected Urea*) **0.52**
 - Draining wet mineral soils (1/3 poorly drained mineral soils) 0.20
 - Low-emission slurry spreading (50% slurry with LESS)
 0.12
 - Increase Nitrogen-use efficiency (Liming soils to pH 6.3) 0.10
 - Extended grazing (20% grassland area: 250d dry & 149d wet) 0.07
 - Inclusion of Clover (25% beef area and 15% dairy area) **0.07**
 - Slurry amendments/additives (20% slurry treated)
- ✓ Animal performance mitigation options ~<u>0.62</u>




0.03

Nitrogen Loss from Slurry

Losses depend on soil and climatic conditions

- Ammonia emissions increase in dry, sunny & windy weather
- Majority of N loss occurs within 24 hours after application

In this example: Trailing-shoe reduced emissions by 36% compared to Splash-plate Total ammonia emission reductions of up to 65% found with other studies

Nitrogen Fertiliser Replacement Values

Application Method	Splash Plate / Broadcast	Dribble bar /Bandspreader	Trailing Shoe	Shallow Injection
NH ₃ Abatement ¹	0%	30%	60%	70%
Total slurry N % availability ²	27%	35%	43%	46%
Available N from 11m ³ Cattle slurry ³	7 kg N	9 kg N	11 kg N	12 kg N
Value Nitrogen € ⁴	€6.00	€7.70	€9.40	€10.20

1, Ammonia loss abatement potential of different LESS methods as per ammonia gas inventory (EPA)

2, Total slurry N availability for different slurry spreading methods, based on ammonia loss abatement.

3, Available N in 11m³ (1000 gallons) cattle slurry using different spreading methods. Typical total N in cattle slurry is 2.4 kg N/m³, as per Teagasc Green Book (Wall and Plunkett 2016)

4, Economic value (€) of N in 11m³ slurry based on protected urea price of €0.85/kg N

Synergies & antagonisms Ammonia vs. GHG's

- Reducing ammonia emissions
 - reduce INDIRECT N₂O (GHG) emissions.
- Altered timing & technique for land-spreading of manures
 - can increase DIRECT N₂O emissions
- LESS and SPRING spreading of manures
 - will reduce Ammonia and also total N₂O emissions
- Reducing CP% in diet will reduce both N₂O & Ammonia
 - limited application where animals are at pasture
- Slurry amendments added during manure storage
 - reduce both methane (GHG) & ammonia from slurry storage

