

Comparing green biorefinery press cake as a replacement feed for silage in cows

Eleonora Serra¹, <u>Bridget Lynch^{2,1}</u>, Megan Bock¹ and Karina Pierce¹

¹UCD School of Agriculture and Food Science, Lyons Farm

²Teagasc, Environment, Soils and Land Use Department, Johnstown Castle

Feeding value of feed stuffs

Chemical composition	1 st cut Grass	Droce cake	
(% of DM)	silage	Press cake	
DM (%)	29.9	37.4	
Crude Protein	16.4	10.9	
NDF	49.1	74.1	
ADF	28.9	41.3	
WSC	4.3	3.6	
Ash	9.8	4.2	
Phosphorus	0.42	0.39	
Gross energy (MJ/kg of DM)	17.7	18.3	

Comparing green biorefinery press cake as a replacement feed for silage in cows

Experimental treatments

	Grass silage	Press Cake
Grass silage	14 kg DM	5 kg DM
Press cake silage	-	9 kg DM
Standard concentrate	7.2 kg DM	7.2 kg DM
Soya bean meal	0.44 kg DM	0.44 kg DM

Animal feeding study:

- ✓ 30 autumn calving early lactation Holstein
 Friesian dairy cows (70 days in milk, 31kg/day, 4.3% fat, 3.7% protein)
- √ 77 days: 14 days acclimatisation + 63 days experimental period
- Measurements: daily dry matter intake, milk
 production and composition, rumen fermentation
 parameters, metabolic status, N&P balance

Experimental treatments

Chemical composition	Grass	Press Cake	
(% of DM)	Silage		
DM (%)	41.18	48.63	
Ash	10.04	6.75	
Crude Protein	18.02	15.22	
NDF	37.33	56.94	
ADF	22.52	27.07	
WSC	4.61	2.25	
Starch	3.55	4.42	
Phosphorus	0.46	0.44	
Ether extract	4.68	2.55	
Gross energy	17.98	18.15	
(MJ/kg of DM)	17.50		

Results animal feeding study: the effect of treatment on DMI and feed efficiency

	Treatment			
Item	Grass Silage	Press Cake	SEM	<i>P</i> - value
DMI				
PMR (kg DM/d)	15.73	14.40	0.342	0.010
Total (kg DM/d)	19.33	18.00	0.342	0.010
N intake	0.71	0.60	0.035	<0.01
P intake	0.095	0.089	0.0001	<0.01
Feed efficiency	1.31	1.27	0.024	0.241

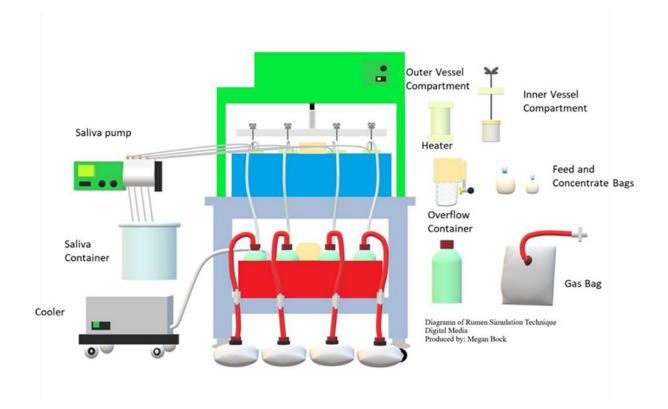
Results animal feeding study: the effect of treatment on milk yield and milk composition

	Treatment			
Item	Grass Silage	Press Cake	SEM	<i>P</i> - value
Milk production (kg/d)				
Milk yield	28.02	27.33	0.724	0.510
Fat	1.27	1.17	0.031	0.032
Protein	0.96	0.94	0.019	0.341
Milk solids	2.24	2.11	0.046	0.055
Milk quality %				
Fat	4.58	4.35	0.133	0.243
Protein	3.47	3.44	0.071	0.799
Urea (% mg/l)	0.027	0.024	0.0007	0.008
SCC (cells/ml)	27	29	3.613	0.064
ECM (kg)	25.63	22.64	0.894	0.025

FINDINGS: animal feeding study

Press cake *versus* grass silage <u>significant effects</u>:

- Rumen ammonia concentration
- Higher proportion of feed N excreted in milk and faeces and no effect on urinary N
- N&P excretion
- Nitrogen use efficiency



Comparing green biorefinery press cake as a replacement feed for silage in cows

In vitro study (RUSITEC):

- ✓ Same two dietary treatments
- ✓ 18 days incubation: 10 days acclimatisation period +
 8 days experimental period
- Measurements: in vitro apparent digestibility, pH, in vitro fermentation parameters, in vitro total gas and methane production

FINDINGS: in vitro study

Press cake *versus* grass silage – <u>trends towards</u>:

- Apparent digestibility
- Rumen ammonia concentration
- Total gas production
- Methane production

CONCLUSION

- ✓ Press cake silage has the potential to partially replace grass silage in the diet of early lactation dairy cows
- ✓ Reduction in N and P excretion and increase in NUE indicate that press cake silage has the potential to offer an environmental mitigation strategy in ruminant systems
- ✓ Further research required with higher quality standing grass crop and clover/multispecies containing swards

Contact: <u>eleonora.serra@ucdconnect.ie</u>; <u>bridget.lynch@teagasc.ie</u>; <u>karina.pierce@ucd.ie</u>