

GHG Emissions

Laurence Shalloo, Katie Starsmore, Ben Lahart and Jonathan Herron

Animal & Grassland Research and Innovation Centre

Teagasc,

Moorepark,

Fermoy,

Co Cork.

Phone: 025 42 222

web: http://www.agresearch.teagasc.ie/moorepark/

Email: moorepark_dairy@teagasc.ie

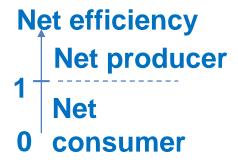
The Irish Agriculture and Food Development Authority

Overview

- Background
- Emissions
- Methane

Grass fed – Protein efficiency

Proteins produced (whole carcasses, milk)

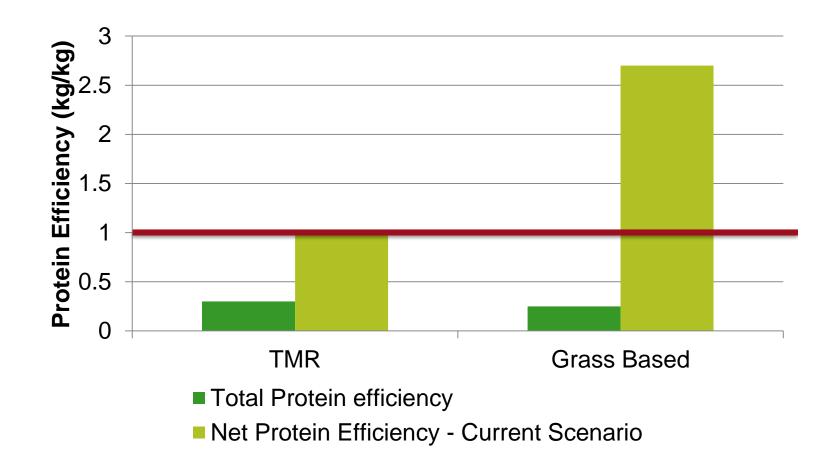

Total Efficiency =

Proteins consumed by livestock (total feed)

Human edible proteins produced

Net Efficiency

Human edible proteins consumed

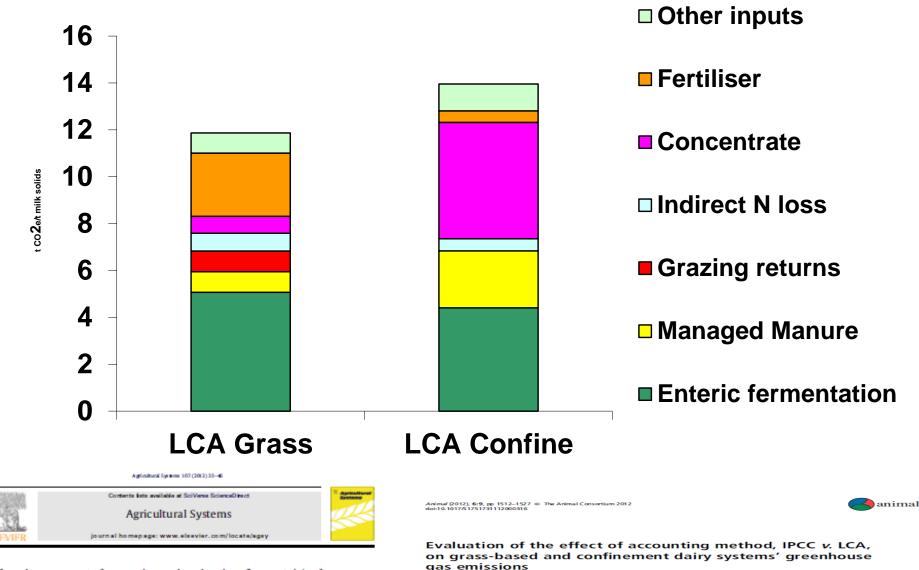

(adapted from Wilkinson, 2011; Ertl et al, 2015)

→ What is human-edible ?

Grass fed – Protein efficiency VistaMilk

Laisse et al., 2018

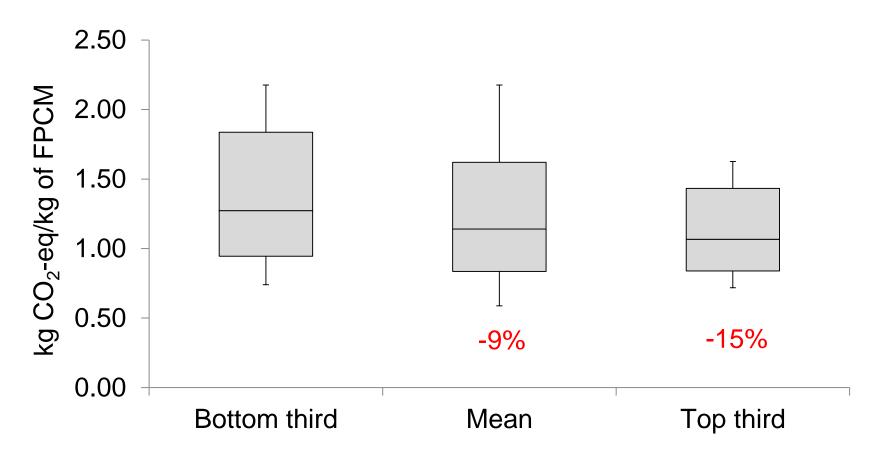
Grass fed – Protein efficiency VistaMilk



Grass fed – Environmental Sustainability

Effect of method and system on GHG emissions

A life cycle assessment of seasonal grass-based and confinement dairy farms

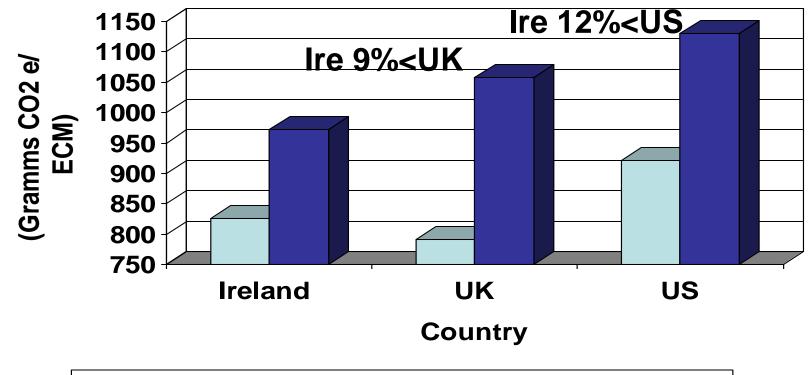

Donal O'Brien^{Ab}, Laurence Shalloo^{Aa}, Joe Patton^A, Frank Buckley^A, Chris Grainger^A, Michael Wallace^b "Liverat (prove inour information for the second and innovation (may, Teguca, Macopat, France, O. Ori, Iriand "School of granulum, Face School and Verstrage Medica, University (Califordia) a Medica Daties of Head

D. O'Brien^{1,2}, L. Shalloo¹⁺, J. Patton¹, F. Buckley¹, C. Grainger¹ and M. Wallace²

¹Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; ²School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

Farm profit and carbon footprint of milk

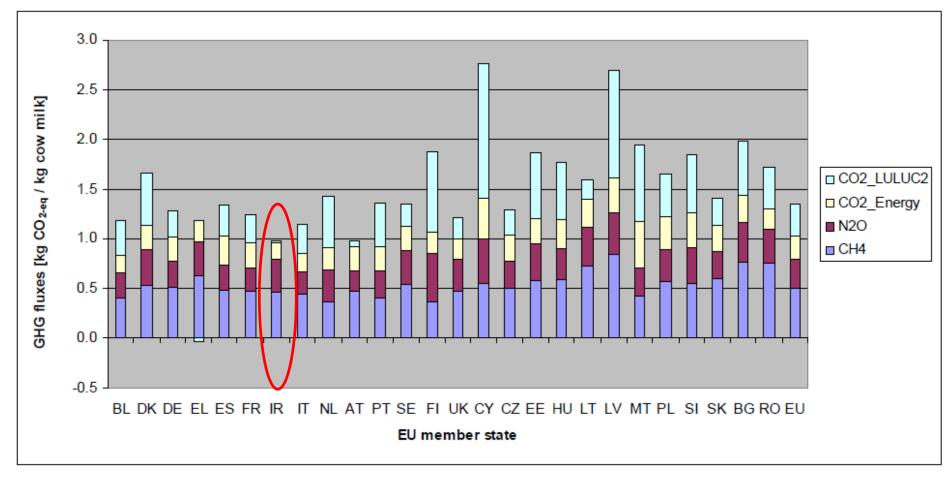
Relating the carbon footprint of milk from Irish dairy farms to economic performance


D. O'Brien,*1 T. Hennessy, + B. Moran, + and L. Shalloo*

*Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland †Rural Economy Research Centre, Teagasc, Athenry, Co. Galway, Ireland

How does Ireland Compare?

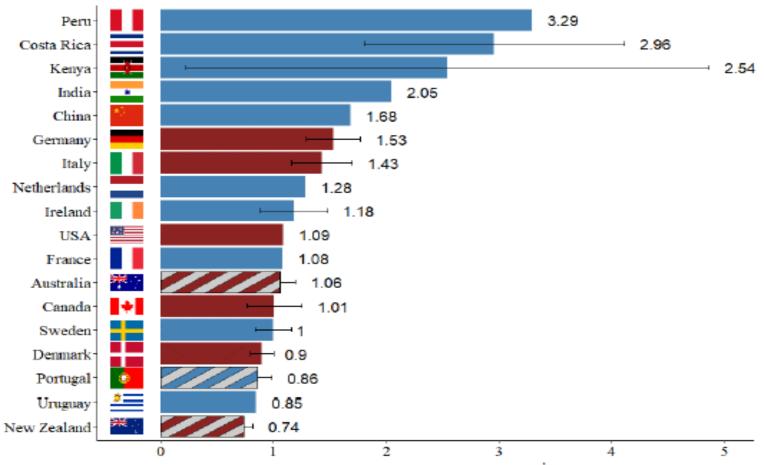
■ On farm (C02e /kgECM) ■ Total (CO2e/kgECM)


AND REAL PROPERTY AND REAL PRO

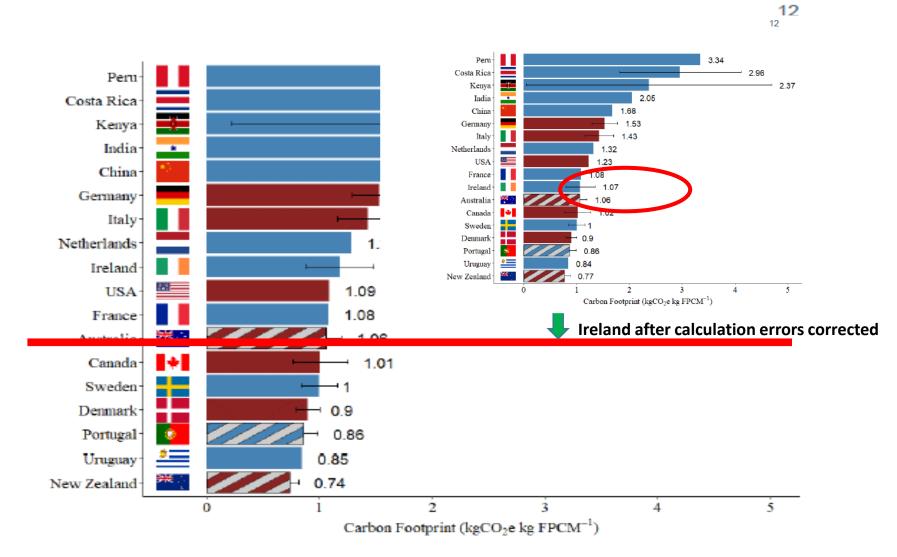
J. Dairy Sci. 97:1835–1851 http://dx.doi.org/10.3168/jds.2013-7174 © American Dairy Science Association[®], 2014.

A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms

D. O'Brien,*¹ J. L. Capper,† P. C. Garnsworthy,‡ C. Grainger,* and L. Shalloo* *Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland †Department of Animal Sciences, Washington State University, Pullman 99164 †The University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom


Emissions per kg milk produced in different EU countries

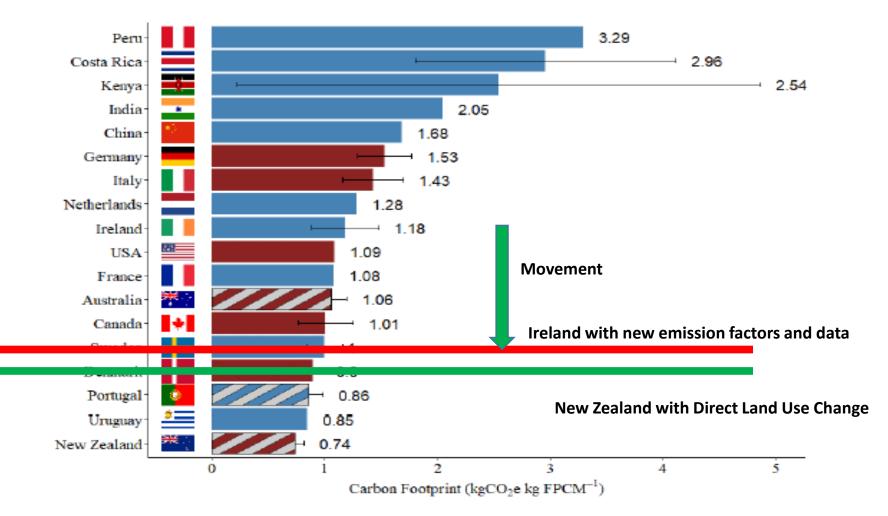
Source: Evaluation of the livestock sector's contribution to the EU GHG emissions (GGELS) **EC**, Joint **Research centre**, 2010.



Carbon footprint of Milk by Country

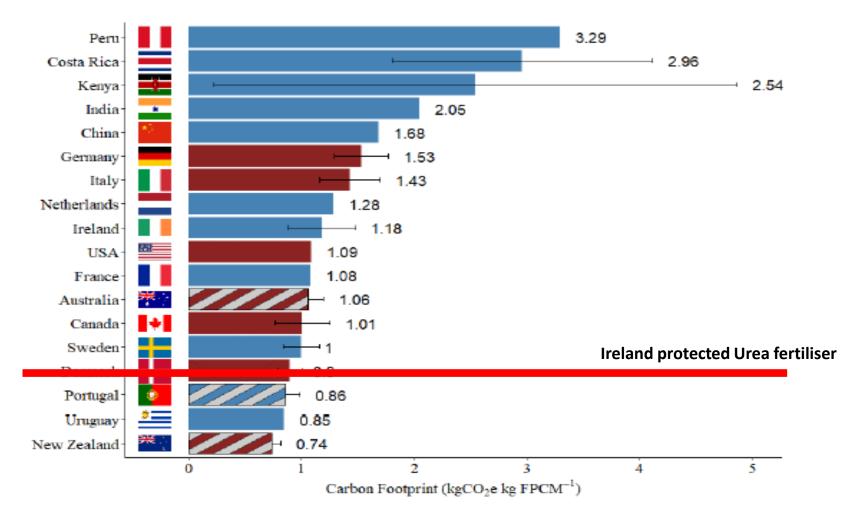
Carbon Footprint (kgCO2e kg FPCM-1)

Carbon footprint of Milk by Country - Errors


Recalculation of the Irish Footprints

- New country specific emission factors have been developed for Ireland by Teagasc research over the past number of years
- Now included in the national GHG inventory compiled by EPA
- New Carbon footprints calculated
 - 1.13 becomes <1.0 kgs CO2e per kg FPCM

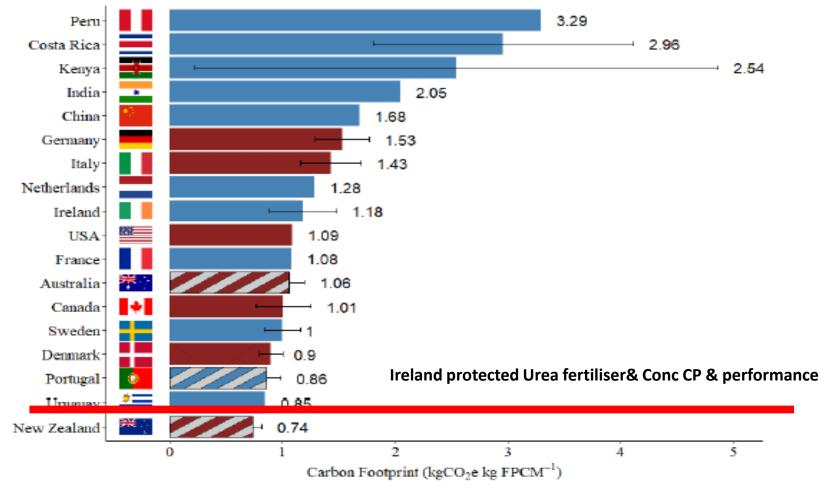
Emission Factor	Old	New	Reference
Dung kg of N2O-N/ kg N excreted	0.02	0.0031	Krol et al. 2016
Urine kg of N2O-N/ kg N excreted	0.02	0.0118	Krol et al. 2016
CAN kg of N20-N/ kg N applied	0.01	0.0149	Harty et al. 2016
Urea kg of N2O-N/kg N applied	0.01	0.0028	Harty et al. 2016
CAN fertiliser production CO2e/kg N	7.11	3.71	Brentrup et al. 2016
Urea fertiliser production CO2e/kg N	4.66	3.50	Brentrup et al. 2016



Carbon footprint of Milk by Country –Recalculation of Irish numbers

12

Carbon footprint of Milk by Country – Future protected Urea



12

(less LUC) Peru 3.29 Costa Rica-2.96 Kenya-2.54 India-2.05 China-1.68 Germany 1.53 Italy 1.43 Netherlands: 1.28 Ireland 1.18 USA 1.09 1.08 France 1.06 Australia ****** • Canada 1.01 Sweden Ireland Protected Urea fertiliser& Conc CP (Less LUC) Denmark-0.9 Portugal 0.86 0.85 Uruguay 0.74 New Zealand 2 3 5 0 4 1 Carbon Footprint (kgCO2e kg FPCM-1)

Carbon footprint of Milk by Country – Future protected Urea + lower CP feed

Carbon footprint of Milk by Country – Future protected Urea + lower GP feed (less LUC)+ performance from grass

Carbon footprint of Milk by Country – Future Protected Urea + lower CP₂feed (less LUC)+ performance from grass+ sequestration

Carbon Footprint (kgCO2e kg FPCM-1)

Further strategies

- Mitigation
- Methane
 - Biogenic Methane
 - Metrics GWP100 versus GWP*
 - Measurement
 - System
 - Additives

Mitigation strategies

• Footprint

- Efficiency measures
- Reduce footprint but could be associated with static or increased absolute emissions (e.g. genetics)
- Absolute emissions
 - Reduce total emissions
 - Footprint?
- Win/Win scenarios reduce footprint and absolute emissions

Further strategies

- Mitigation
- Methane
 - Biogenic Methane
 - Metrics GWP100 versus GWP*
 - Measurement
 - System
 - Additives

Biogenic Methane

- *Biogenic Methane is* emitted from biological processes including livestock.
 - Plants absorb carbon dioxide through the process of photosynthesis
 - Ruminants are then able to break down indigestible cellulose in their rumens
 - carbon that makes up the cellulose is converted to methane
 - After circa 12 years, the methane is converted to carbon dioxide and the cycle starts again.
- In the case of fossil fuel the CO2 produced is new carbon Stored for a very long time
- In a situation where methane is constant the same amount of methane that is being produced is being oxidised and therefore there is Little ADDITIONAL warming effect

eagas

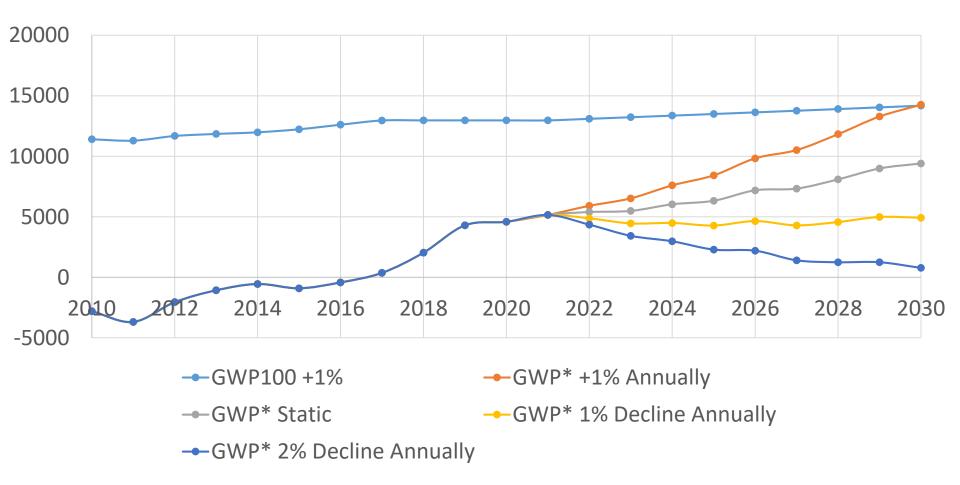
AND FOOD DEVELOPMENT AUTHORITY

Biogenic Methane Metric GWP*

- Currently all calculations use GWP100
 - Brings everything to 100 year periods
 - Methane has a multiplier of 28
 - Nitrous oxide 265
- Relatively new metric GWP*
 - Reflects that methane has a half life of 12 years
 - It has a higher multiplier effect at 84

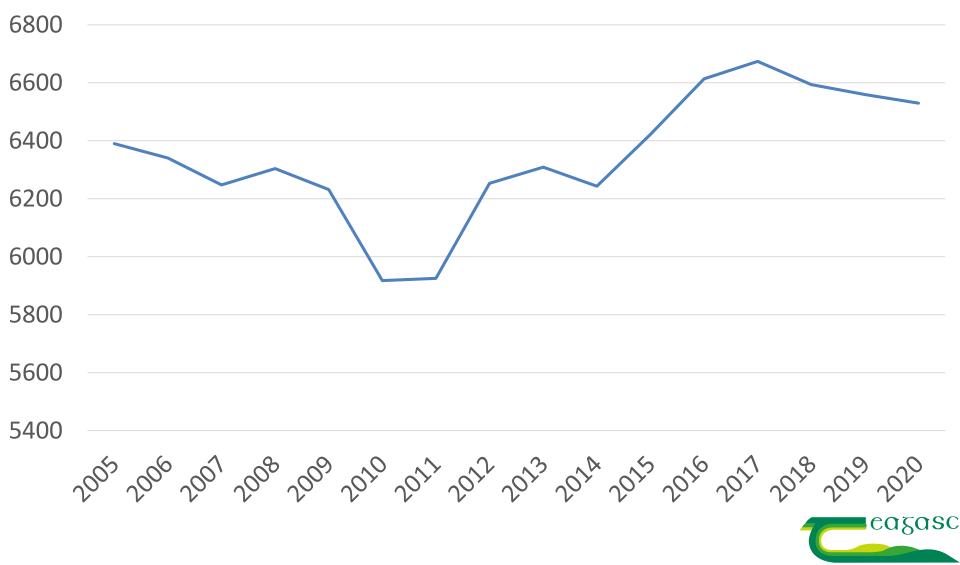
Biogenic Methane GWP 100

Livestock*000		Methane (*000 tonnes)	Methane CO2e (*000)
201	.8 6,594	518.8	12,970
201	7 6,674	518.5	12,963
201	6 6,613	504.4	12,610
201	.5 6,422	489.4	12,235
201	4 6,243	479.4	11,985
201	.3 6,309	474.0	11,850
201	2 6,253	467.3	11,683
201	1 5,925	451.9	11,298
201	0 5,918	456.3	11,408
200	9 6,232	465.9	11,648
200	8 6,304	474.0	11,850
200	7 6,248	475.5	11,888
200	6 6,340	484.7	12,118
200	5 6,390	487.8	12,195
200	4 6,212	493.6	12,340
200	3 6,223	494.6	12,365
200	2 6,333	497.1	12,428
200	1 6,408	503.1	12,578
200	0 6,330	506.2	12,655
199	9 6,558	530.3	13,258
199	8 6,952	547.7	13,693


AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Biogenic Methane (GWP*)

	Livestock*000	Methane (*000 tonnes)	Methane CO2e (*000)	Methane GWP* (*000)
201	8 6,594	518.8	12,970	2,032
201	7 6,674	518.5	12,963	366
201	6 6,613	504.4	12,610	- 423
201	5 6,422	489.4	12,235	-908
201	4 6,243	479.4	11,985	- 555
201	3 6,309	474.0	11,850	- 1,076
201	2 6,253	467.3	11,683	- 2,056
201	1 5,925	451.9	11,298	- 3,690
201	0 5,918	456.3	11,408	- 2,799



Biogenic Methane GWP* and GWP100

Cattle numbers December

AGRICULTURE AND FOOD DEVELOPMENT AUTHORIT

Biogenic Methane

- The importance of methane mitigation increases under GWP* metrics
- Methane effects are magnified
- Significant focus needed on methane
 - System baseline
 - Genetics
 - Age
 - Additives