Multi-species Swards Organic Seminar

Thomas Moloney DLF Seeds

What is a multi-species sward?

Many studies show significant production benefits associated with MSS compared to PRG swards

• DM yield

Annual yield, seasonal distribution, <u>reduce N fertiliser</u>, drought tolerance

Animal performance

Milk yield, live-weight gain, reduce parasite burden

Environment

C sequestration, biodiversity, water quality, N-use efficiency

Seasonal production

Multi-species swards for silage production

Thomas Moloney^{1,2}

Edward O'Riordan¹ & Padraig O'Kiely¹ Helen Sheridan² Jim Grant³

¹Teagasc Grange ²University College Dublin ³Teagasc Ashtown

Background

- Smartgrass DAFM funded project
- Assess multi-species grassland swards
 - Grazing (UCD Lyons estate)
 - Silage (Teagasc Grange)
 - Biodiversity of plants, above- and below-ground invertebrates
 - Soil chemistry
 - GHG flux

Grass silage

- Primary form of conserved forage
- Made on ~82% of farms
- Produced by the fermentation of a high moisture crop
 - Anaerobic
 - Lactic acid dominant
 - Reduce pH
- Maintain crop quality
- Typically grass WSC, BC, DM

Multi-species swards for silage production

Yield

- Nutritive value
- Persistence
- Growth stage
- Ensilability
- Ensiling efficiency

Grass monoculture vs. red clover?

	Annual yield (tonnes DM/ha)		
Species	+ 360 kg N/ha/yr	+ Red clover	
Per.ryegrass	11,736		
It.ryegrass	12,969		
Timothy	11,666		
Red clover		11,846	

• Replace N with red clover??

Grass <u>+ N</u>vs. <u>+ red clover</u>?

Annual yield (tonnes DM/ha)

Species	+ 360 kg N/ha/yr	+ Red clover
Per.ryegrass*	11,736	10,289
It.ryegrass	12,969	9,794
Timothy	11,666	11,477
Red clover		11,846

*'Reference' species

Impact of +N on p.ryegrass and multispecies mixes

- Mix 1: PRG, timothy, red and white clover
- Mix 2: PRG, timothy, red clover, plantain and chicory

- PRG +96%
- Mix 1 +18%
- Mix 2 +10%

Botanical composition: Mix 2 (5 species)

Distribution of DM yield

Herbage chemical composition

Herbage chemical composition

A diverse, complex, heterogeneous and UNCONTROLLED process

Quality of preservation

	Pre-ensilage	Post-ensilage	
		Good preserv.	Bad preserv.
Dry matter (DM; g/kg)	176	175	179
рН		3.9	4.7
Lactic acid (LA; g/kg DM)		86	60
Acetic acid (g/kg DM)		18	27
Propionic acid (g/kg DM)		2	8
Butyric acid (g/kg DM)		2	19
Ethanol (g/kg DM)		20	36
FP (g/kg DM)		128	150
WSC (g/kg DM)	149	16	10
LA/FP		0.67	0.39
NH₃-N (g/kg N)		104	191
C. protein (g/kg DM)	184	213	192
DMD (g/kg)	827	826	784

Source: Teagasc Grange

Preservation of multi-species swards

- Under favourable ensiling conditions MSS can preserve satisfactorily as silage, comparable to PRG
 - However...

» Low DM makes wilting important

Conclusions

- Both MSS produced greater annual DM yields than PRG
 - Particularly at zero or low N rates
 - Seasonal distribution
- Overall, herbage DMD was lower and CP greater for MSS than PRG
- Herbage quality and ensilability did not reflect the proportions of species present
 - Need for in-situ evaluation
- Can preserve satisfactorily as silage

DLF Seeds

- Partner farm programme
- LegacyNet
- Mixture formulation
 - Spring growth
 - Grazing red clover
 - Chicory and plantain varieties
 - Nitrification inhibiting plantain varieties

tmoloney@dlfseeds.ie 087 396 1265 @tom_moloney58