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Grassland Monitoring Approaches

Traditional Remote sensing
methods methods
Visual | | r%ﬁ'g%l
assessment sensing
Microwave
Cut and dry =1 remote
sensing
Rising
platemeter -1 UAV
and
PastureBase
Field
spectrometry

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., and Green, S. , “Satellite remote
sensing of grasslands: from observation to management—a review”, 2016.
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Comparing current grass growth with the satellite record

Looking over 15 years of satellite
data allows us to calculate
average condition at any point in
the year.

Once we know the average we
can calculate how current
conditions deviate from it.

We produced an online service
that showed how many days
ahead or behind growth was at a
townland scale on a weekly
basis
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Looking at weather’s impact on grass growth

Satellites observe the effect of stress on
plants very well and this is the basis of
many precision agriculture applications.
Here we observe the stress of the dry
spell in May last year using the
Normalised Difference Moisture Index
derived from the satellite data.

NDMI

Wetter

The brown areas in the North East were
those areas under most stress form the
dry spell
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https://www.teagasc.ie/rural-economy/rural-economy/spatial-analysis/gis-monthly-maps/

Models to Estimate Biomass Remotely at a national scale

Vegetation index Biophysical Machine Learning

basetrnln :)edgégss'on models Approaches

National Grass Growth Curve
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What is Machine Learning?

Machine learning is an application of artificial intelligence (Al) that provides
systems the ability to automatically learn and improve from experience without

being explicitly programmed.
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First attempt at Machine learning for time series analysis of grass growth
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Acricurture anp Foop DeveLopment AutaoRITY




Input data
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New data and new algorithm

Random
forest

Random forest is a
supervised learning
algorithm. The RF model
takes as input data and
creates lots of decision
trees.

Predicted
output

Grass growth curve
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Model transfer to national level

_ National model:
1 site 8 Farms 180 farms

Farm locations N
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Results

Grass Growth Rate (kg DM/ha/day): Training set
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National model

Input data
2017-2020
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Training
2017-2019

Testing |:>

2017-2019

Evaluation
2020

To get a national model, we developed 2 models.
One for Jan-June, when the grass growth is high
with a peak. Other is for July till Dec, when grass
growth is lower
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For 180 representative farms
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National model
results

For 180 Farms

2020

Scatter plot for modelled grass growth rate (kg DM/ha/day) Scatter plot for modelled grass growth rate (kg DM/ha/day)
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The two models were trained on randomly
selected 70% of 2017-2019 data and were
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National model Evaluation
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2020 dataset

Grass growth curve
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Year: June-Oct 2020, For a single Farm
July-Dec

The  trained model
(2017-2019) was used to
predict for 2020 data
which is  completely
independent of training
data.

The grass growth curve
obtained from the model
Is shown for one farm for
2020 data.
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Conclusions

We can successfully map growth rate at farm scale
using machine learning and multispectral satellite data

Satellites give us a national overview of farms

This model is now In final stages for testing on 2020
data for Munster

As more satellites come on line with higher resolution
for training the machine learning models, we will rely
less on the field data

Ceagose

Acricurture anp Foop DeveLopmentT Avrrorr TY



Thank you
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