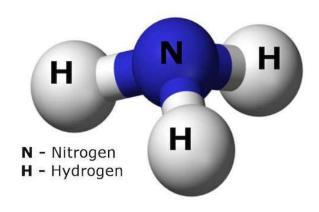
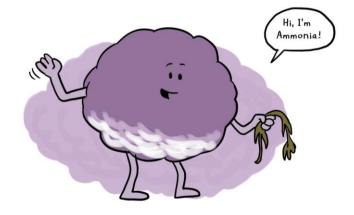
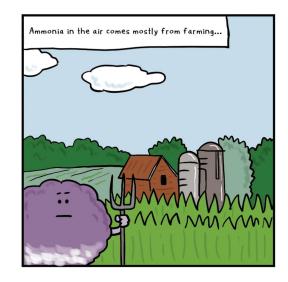
Ammonia emissions, impacts & solutions.

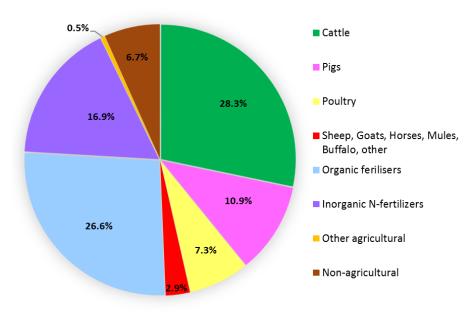

Prof. Dominika Krol – Teagasc


Dr. David "Dáithí" Kelleghan MCIEEM – University College Dublin

What is ammonia

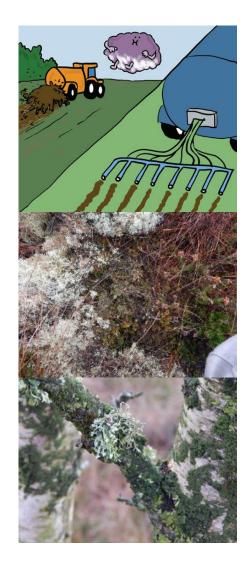
- Compound of nitrogen and hydrogen with the formula NH₃
 - Colourless gas
 - Characteristic pungent smell
- Short residency time in the atmosphere
 - Readily reacts with other chemicals to form particulate matter
 - ▷ NH₃ problematic locally
 - Particulate matter transported long distances – problem far away
- Impacts on;
 - Environment
 - Human health





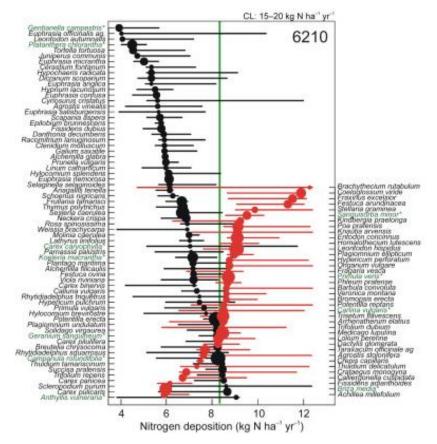
Sources of NH3

- In Ireland
 - 99% of emissions from agriculture
- Across 28 EU Member States
 - 93.4 % of emissions
- Fertilisers
 - Inorganic/synthetic
 - Organic/animal slurry or manure
 - Account for 43.5% of EU emissions
- Cattle
 - Dairy and beef
 - Account for 28.3%
- Pigs & Poultry
 - Account for 18.2%


Emission Breakdown from 28 EU MS

Where Impacts Occur

- Unlike Greenhouse Gas emissions
 - National ceilings limit the contribution to an international problem
- Ammonia impacts and effects are primarily local problems
- High emissions effect the neighbouring environment directly
- Carbon trading is not possible,
- Source is proximal the impacted area
- Following chemical transformation in the atmosphere
- Can disperse several km contributing to
 - Wet deposition total nitrogen deposition
 - Human health impacts

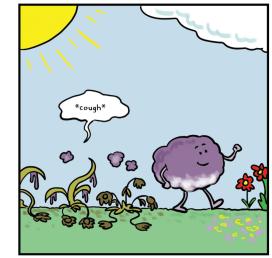


Impacts of NH₃

- Contribution of pollutant above which negative consequences are expected
- Critical levels
 - Atmospheric concentrations of NH₃
 - Annual average
 - UNECE critical levels of;
 - > 1 μ g NH₃ m⁻³ for lichens & bryophytes
 - > 3 μ g NH₃ m⁻³ for higher plants

Critical loads

- Total nitrogen deposited (including NH₃)
 - Includes wet and dry deposition
- 30 year average
- Habitat specific
- These may be too high to protect ecology

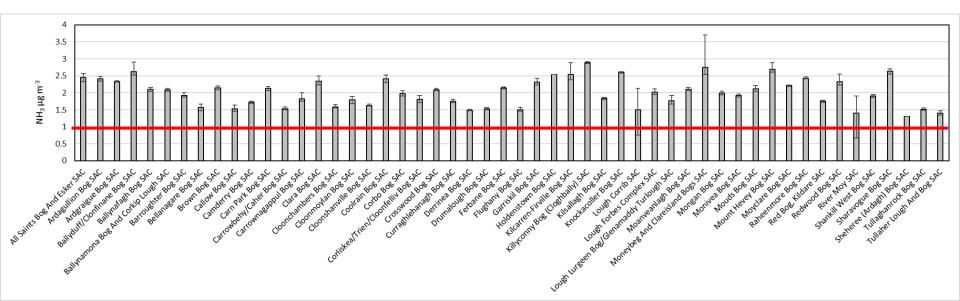


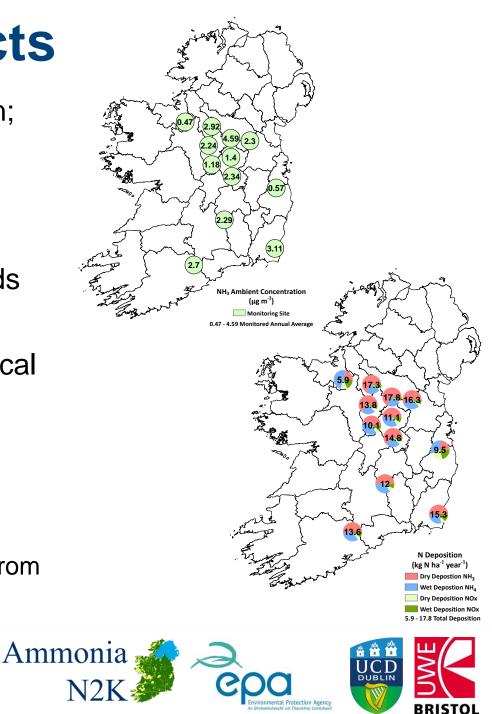
Annex 1 Code	Annex 1 Habitat	Critical Load kg N ha ⁻¹ y ⁻¹	Species Change Point kg N ha ⁻¹ y ⁻¹
4010	Northern Atlantic wet heaths with Erica tetralix	10 - 15	4.9
4030	European dry heaths	10 - 20	4.1
6210	Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia)	15 - 25	8.3
7130	Active blanket bogs	5 - 10	4.9

Kayla Wilkins, Julian Aherne, Andy Bleasdale.Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high, Atmospheric Environment, Volume 146, 2016, Pages 324-331, ISSN 1352-2310 https://doi.org/10.1016/j.atmosenv.2016.07.016.

Ecological Effects of NH₃

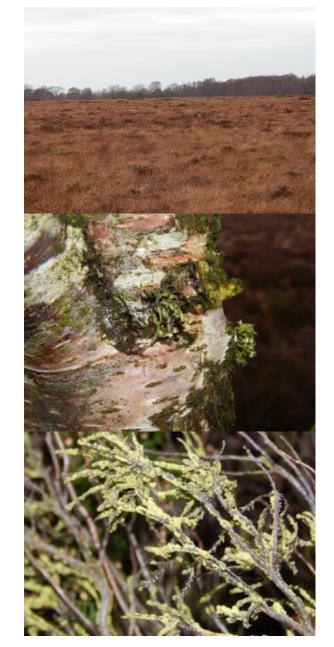
- Ecology is impacted through
 - **Direct toxicity** of ammonia itself
 - Eutrophication as deposited reactive nitrogen
 - Acidification as deposited nitrogen
- Diverse range of impacts;
- Loss or damage to nitrophobic species e.g. Sphagnum sp.
- Encouraging nitrophytic species e.g. algal slimes
- Exacerbating impacts from drought, frost, pathogens, etc
- Poses significant threat to conservation of Irish habitats




Impacts on Natura 2000

- Natura 2000 legally protected under the Habitats Directive
- No plan or project which allows impacts on such sites is permitted
- Currently all "Active raised bog" Natura 2000 sites exceed concentrations that would cause an impact
 - Based on most recently available concentration model

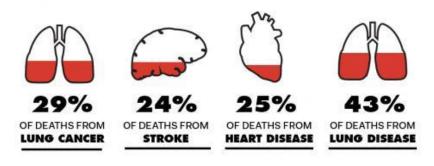
Monitored Impacts


- NH₃ concentration monitoring on;
 - 12 Natura 2000 sites in Ireland
 - 12 months
- All raised bogs monitored exceeded critical levels and loads for impacts
- Only 2 sites fell below lower critical level for lichens and moss
 - Both upland sites
 - Second site (Wicklow Mountains) exceeded critical loads
 - Due to wet deposition of nitrogen from upwind agriculture

🖉 National Parks & Wildlife Service

Raheenmore Bog

- Not just from intensive hotspot sources
 - e.g. housed pig and poultry
- Impacts from passive sources
- On Raheenmore Bog SAC in Co.
 Offaly
 - Monitored concentration of 2.3 µg NH₃ m⁻³
 - Above the critical level of 1 µg NH₃ m⁻³
 - No intensive hotspot sources of ammonia nearby
 - Closest is > 3 km downwind
 - Only local sources of ammonia
 - Adjacent dairy farming
 - Slurry spreading

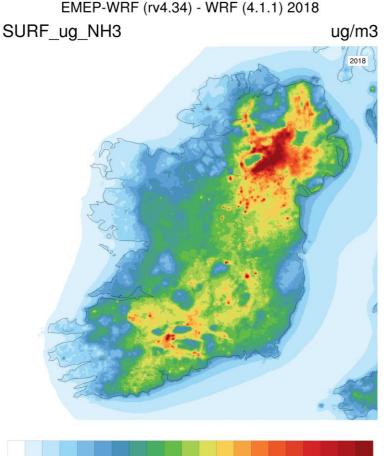


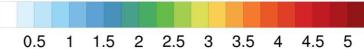
Human Health

- Particulate matter (PM2.5) formed from ammonia
 - From reactions with other atmospheric pollutants
 - Primarily NOx and SOx
 - PM 2.5 passes through lungs into bloodstream
 - An increase cardiovascular hospital admissions by 1% for every additional 10 µg/m³ in the air
- Managing NH₃ emissions
 - Best route to reduce urban PM2.5
- In Europe 50% of urban PM2.5
 - Formed from agricultural NH₃

INVISIBLE KILLER

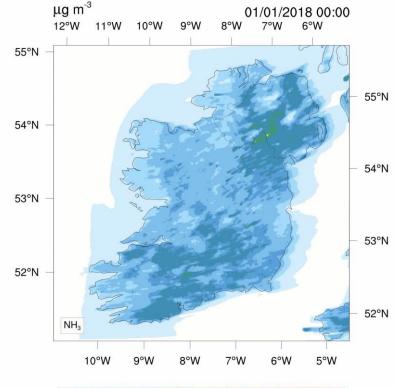
Air pollution may not always be visible, but it can be deadly.

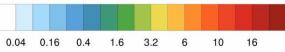




National Modelling

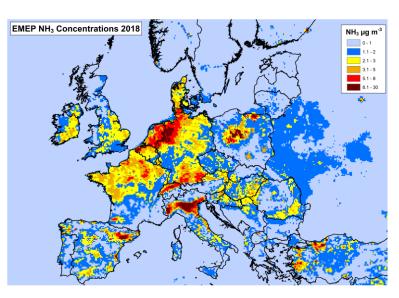
- National emission models compiled by the University of Aarhus (MapEire)
 - How much NH₃ emitted per km²
- Concentration model developed by UKCEH / UCD project
- Uses meteorological data to
 - Model how NH₃ disperses in atmosphere
 - Resulting local concentrations
 - Calculate critical level exceedances

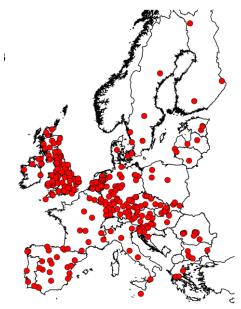



UK Centre for Ecology & Hydrology

Seasonal & Spatial Variation

- Concentrations highly dependant on local emissions
- Highly spatially variable
- Where you have high agricultural activity
 - High concentrations
- Emissions & concentrations
 - Highest when warm
 - Lowest when cold





NEC Directive Monitoring

- National Emissions Ceilings Directive 2016/2284/EU
 - Originally intended to limit emissions
- Recent updates now requires member states to;
 - set up national monitoring network on sensitive sites
 - to monitor long term impacts and effects of air pollution
- Monitor for example;
 - NH₃ concentrations
 - Nitrogen deposition
 - Vegetative community responses
 - % tissue nitrogen in mosses
 - Nitrogen content in soils
 - etc.

UK Centre for Ecology & Hydrology

