Carbon sequestration and water table impacts on peat soils

The Challenges

- The National Climate Action Bill set Ireland a target to reduce national emissions by 51% by 2030 relative to 2018
- Agriculture comprises 34% of national GHG emissions
- Land-use is moving from net-net to gross-net reporting → LULUCF becomes a source of emissions due to high emissions from peat soils and low rates of afforestation
- AFOLU = 40% of national emissions
- GWP of methane is increasing from 25 to 28 times that of CO₂

The Policy Requirement

- What are national AFOLU GHG emissions projected to be under a business as usual (BAU) scenario?
- How much can mitigation strategies reduce emissions over the period and how are these subdivided?
- What is the cost?

Historical and Projected Agricultural Emissions (excludes mitigation actions)

Land-use emissions and removals

	Baseline	2018	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
BAU												
Afforestation (New Bau projections)			-1.61	-1.82	-1.99	-2.43	-1.95	-2.18	-1.87	-1.79	-1.84	-1.61
Forest land (FL-FL) New Projections			0.43	0.36	1.00	2.40	2.07	2.00	2.58	2.72	3.04	2.83
Total forest land Incl (HWP)		-3.321	-2.04	-1.46	-0.90	0.06	0.11	0.81	0.71	0.95	1.20	1.23
Defor to settlement and other			0.36	0.36	0.36	0.35	0.35	0.36	0.36	0.36	0.35	0.34
Cropland (CL)**	0.01	-0.129	0 01	0.01	0 13	-0.08	0.01	-0 15	0.10	0.03	-0 11	0 10
Grassland (GL)**	6.8	6.683	7.33	7.30	7.27	7.25	7.22	7.20	7.20	7.19	7.18	7.17
Wetlands (WL)**	2.2	2.32	2.34	2.24	2.16	2.08	1.98	1.91	1.83	1.74	1.66	1.58
Settlements		0.09	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.21	0.21	0.21
Other		0.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total		5.7	8.25	8,36	8,93	9.57	9,60	10.04	10.11	10.17	10.19	10.33
Net-net total		-3.46	-1.39	-0.92	-0.35	0.29	0.32	0.76	0.83	0.91	0.93	1.07

How can C sequestration help achieve these targets?

- Under 2030 Climate Framework ESD carbon sinks ~ 6% (2.7 MT CO₂e)
- Beyond can contribute to a) achieving neutrality and b) reducing C footprint of agricultural produce
- Carbon can be sequestered long term in:

Woody biomass – 20-30 years (conifers), 60-150 years (broadleaves)

Soils – decades to several centuries

How much Carbon does a grassland take up?

Carbon Sequestration

Peatland

IPCC peatland emission factors

	Emissions Drained	Emissions Rewetted	∆ Emissions	Grassland to cropland
				(b)
Land use	[t CO ₂ e I	ha-1*yr-1]		
Cropland, nutrient poor	37.6	3.1	34.5	t fi
Cropland, nutrient rich	37.6	9.9	27.7	O _40 _
Grassland, nutrient-poor, shallow drained	23.3	3.1	20.2	-60
Grassland, nutrient-poor, deep drained	24.1	3.1	21.0	-80
Grassland, nutrient-rich, shallow- drained	16.7	9.9	6.8	0 50 100 150 200
Grassland, nutrient-rich, deep- drained	29.2	9.9	19.3	Years
				Poeplau et al. 2011 GCB

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

transparent chamber - CO2 - vegetated cores (11am-14pm)

transparent chamber - CH4 - vegetated cores (11am-14pm)

Flux measurements

- Gives an annual estimate
- Elucidate drivers of C gain and loss
- Useful for constraining models

Eddy Covariance Flux Towers

- 10 Towers purchased (4 peat and 6 mineral soils)
- NASCO = 32 flux towers
- Investigate management impacts – rewetting and reducing fertiliser
- Gives annual C estimates
- Elucidate drivers of C gain and loss
- Used to constrain C models

Peatland emissions and water

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Rewetting does not mean restoration

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Impact of water table

Can link EC and remote sensing

- Use NDVI 'greenness index' as a proxy
- Solar-Induced Florescence as a proxy for photosynthesis
- Photochemical Reflectance Index – proxy for Light use efficiency – diagnostic for drought stress

Model management impacts

- Legume & multi-species 0.16 tC ha⁻¹ yr⁻¹
- Manure addition 0.3 tC ha⁻¹ yr⁻¹
- Good nutrient status (liming) 0.21 tC ha⁻¹ yr⁻¹

Model climate impacts

How climate-proof is sequestration?

Conclusions

- Have good C baselines for grassland know how much C and type of C
- Gathering data on management impacts
- Need to understand underlying processes ¹³C isotope tracing including soil microbiology and esp. rhizosphere
- Require long-term monitoring where activity data is gathered
- Require EC monitoring at a field and regional scale link to remote sensing products and use for model validation

