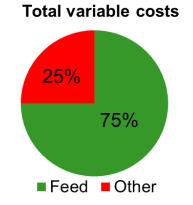


Optimising performance of beef cattle

Mark McGee PhD Teagasc, AGRIC, Grange, Dunsany, Co. Meath

"Winter Finishing Mart Event" Cillin Hill, Kilkenny 13th September 2022

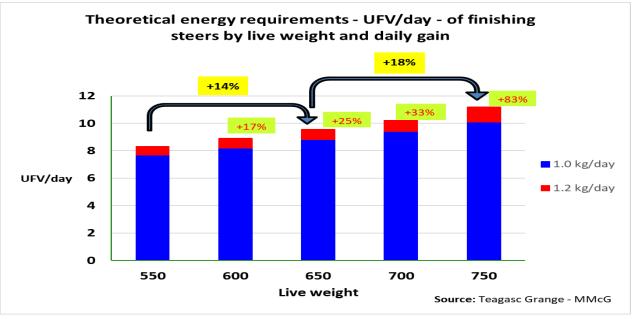

Introduction

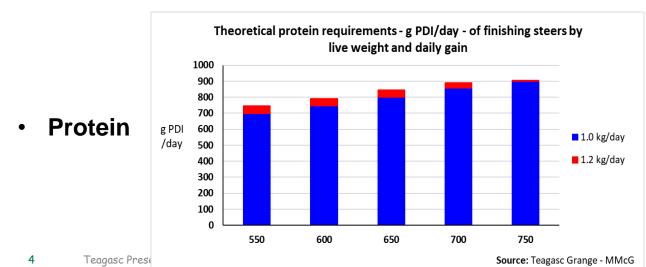
Beef production: Conversion of feed to animal product as (cost) efficiently as possible.

Feed provision: Single largest variable cost in beef production

Feed (cost) efficiency: Major factor determining

cost competitiveness + environmental footprint & sustainability.




Animal Factors

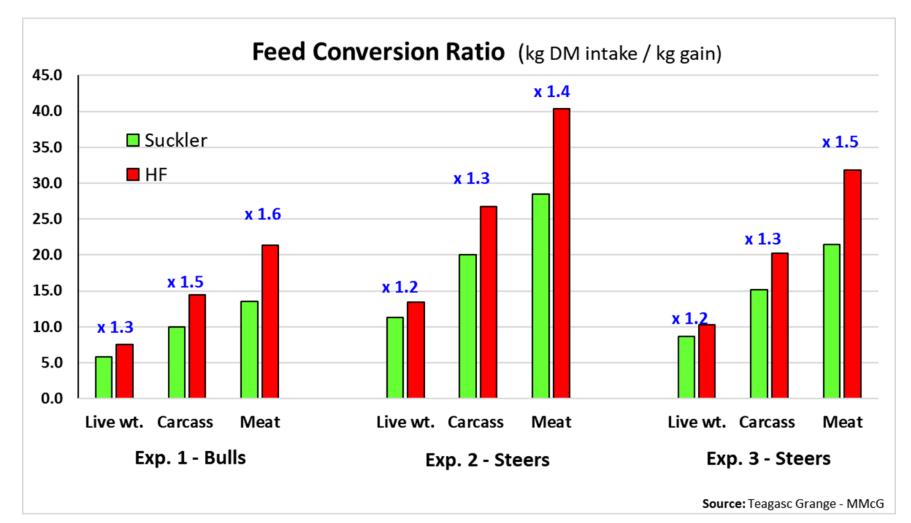
Effect of live weight & live weight gain on nutrient requirements

• Energy

- @Fixed rate of gain, feed requirements increase by ~15% / 100 kg increase in live weight
- More feed required to put same increment of gain on a 'heavy' than on a 'lighter' animal
- Feed requirements are lower & efficiency is better with light, fast growing animals
- Minerals & Vitamins
- Water

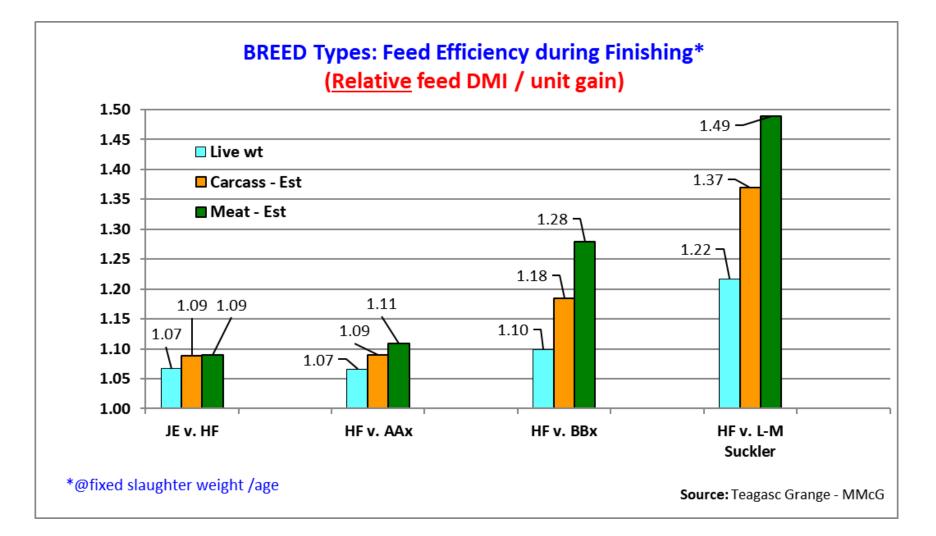
BREEDS: Suckler-bred Charolais vs.

Dairy-origin Holstein-Friesian steers offered a <u>high-concentrate</u> 'finishing' diet

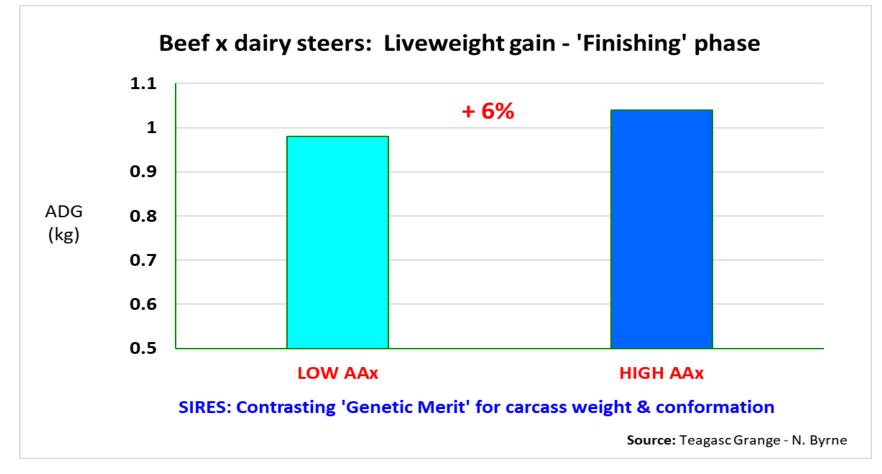


	Charolais	Holstein-Friesian	Sig.	
Age, initial (days)	654	678	***	24
				% Diff
Daily DM intake (kg)	11.5	12.6	***	10
(g/kg live weight)	15.8	19.1	***	21
Daily live weight gain, ADG (kg)	1.37	1.28	P=0.07	-7
Feed conversion ratio (kg DM/kg ADG)	8.4	9.8	***	17
Live weight, mid-test (kg)	725	659	***	-9
Carcass weight (kg)	446	360	***	-19
Kill-out proportion (g/kg)	580	519	***	-11
Carcass conformation (1-15)	10.3	4.5	***	-56
Carcass fat (1-15)	10.0	9.9	NS	-1
			Source: Teagaso	: Grange - MMc

CONCLUSION: The lighter, slower-growing Holstein-Friesian steers consumed 10% more feed DM resulting in a substantially inferior feed efficiency compared to Charolais.



BREEDS: Late-maturing suckler-bred vs. **Holstein/ Friesian** cattle offered a high-concentrate finishing diet



BREEDS: Feed Efficiency - Summary of Experiments

Genetic Merit

Grass silage + concentrate diet:

<u>Similar DM Intake</u> between the genotypes

Bulls v. Steers

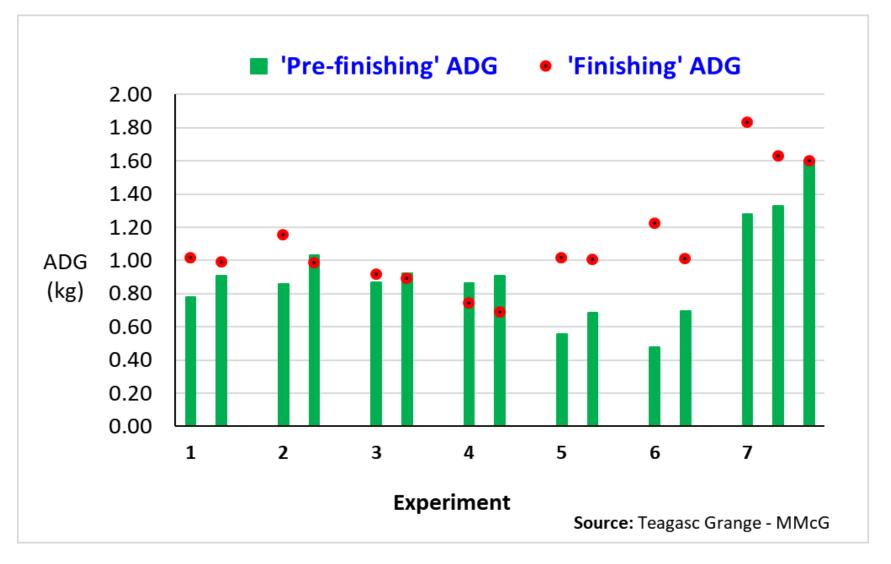
International studies

Proportional superiority of bulls over *comparable* steers for,

- Live weight gain = ~0.08-0.20
- **Carcass weight** = ~0.09-0.14
- Lean meat yield = ~0.20
- **Feed efficiency** = ~0.14-0.17
- Carcass
 - Better conformation
 - ~0.27-0.35 less fat

Animals: Late-maturing suckler bred Diet: 127-day 'store' period followed by high-concentrate diet for 174 days

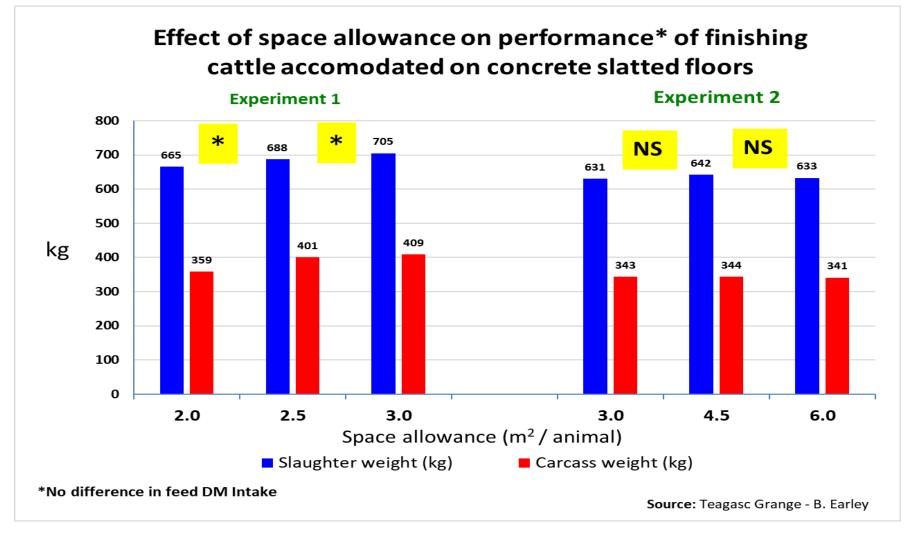
	STEER	BULL	% Diff
Daily DM intake (kg)	9.4	9.8	4
Daily live weight gain, ADG (kg)	1.27	1.52	20
Feed conversion ratio (kg DM/kg ADG)	7.4	6.5	-13
Slaughter weight, (kg)	683	729	7
Carcass weight (kg)	382	419	10
Kill-out proportion (g/kg)	560	575	3
Carcass conformation (1-15)	9.1	10.2	12
Carcass fat (1-15)	8.6	7.9	-8


Source: Teagasc, Grange – EO'R

Management Factors

Compensatory growth potential

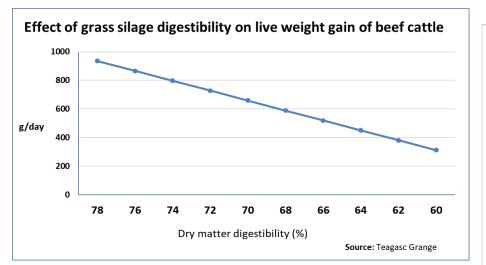
Finishing duration: Live weight gain & Feed efficiency

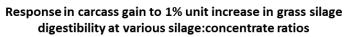

- Animals: Suckler-bred steers
- Diet
 - Grass silage *ad libitum* + 5 kg concentrate fresh weight (Supp.)
 - Concentrates *ad libitum* + Restricted grass silage (Ad lib.)

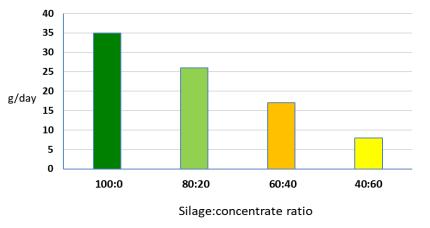
	ADC	G (kg)	Total DMI (kg/day)		FCR (kg DM/kg ADG)	
Diet	Supp.	Ad lib.	Supp.	Ad Lib.	Supp.	Ad lib.
Duration (days)						
Overall: 0-132	0.94	1.17	10.1	10.7	10.7	9.2
1 st 'half': 0-62	1.13	1.38	9.9	11.0	8.8	8.0
2 nd 'half' 63-132	0.77	0.98	10.3	10.5	13.4	10.6
1 st vs. 2 nd 'half' % Difference	-32	-29	+4	-5	+52	+34

Source: Teagasc, Grange - MMcG

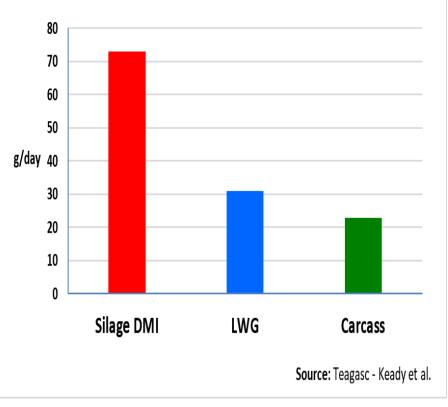
Space allowance

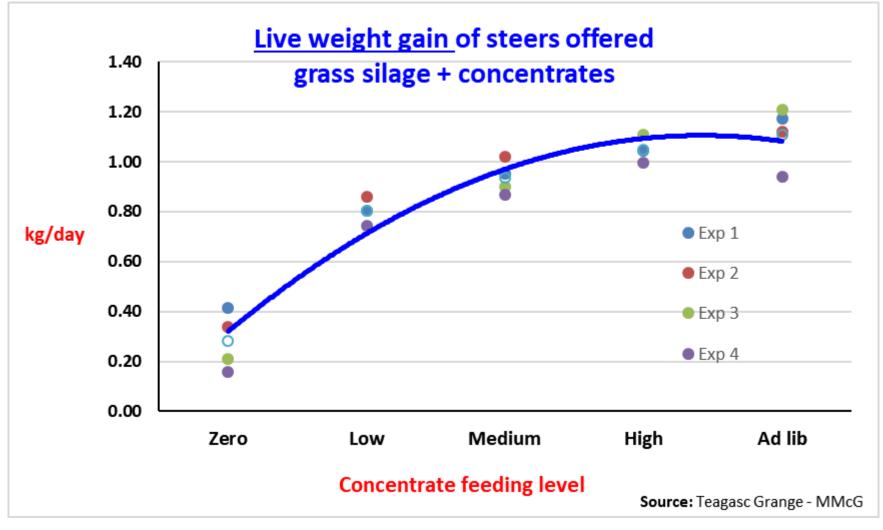



Feed Factors

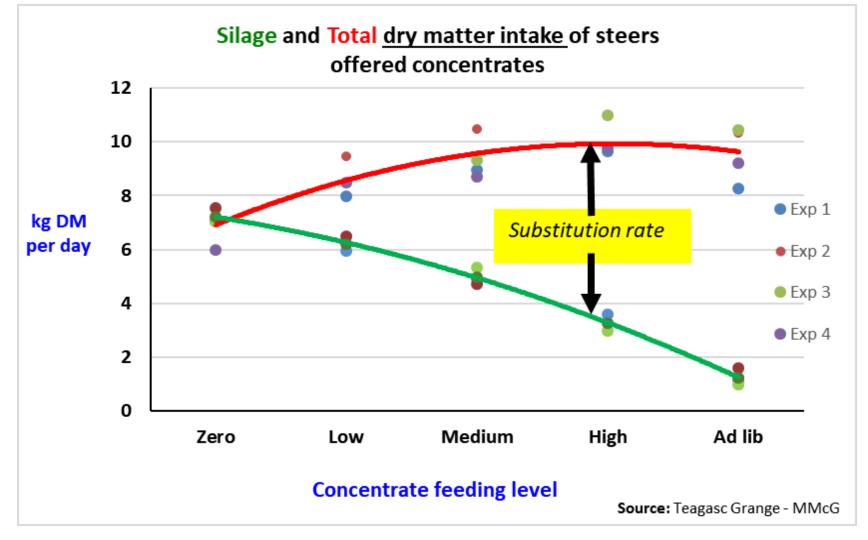


Grass silage digestibility




Source: Teagasc - Keady et al.

International Literature: Effect of a 1-unit increase in grass silage digestibility % on beef cattle intake and performance


Grass silage + concentrates: 'Growth' response

'High' DMD grass silage

Grass silage + concentrates: Intake response

Grass silage 'digestibility': Supplementation

Effect of Silage Digestibility ?

Research: each <u>1 unit decline</u> in DMD of grass silage requires an additional ~0.33 kg concentrate daily to sustain performance in finishing cattle.

	Concentrate level - kg/day			
Grass Silage DMD - %	<u>60</u>	<u>65</u>	<u>70</u>	<u>75</u>
Finishing <u>steer</u> * (1.0 kg ADG)	-	7.0-8.0	5.5-6.5	4.0-5.0

Corresponding "optimum" daily concentrate supplementation rates for

<u>Finishing Heifers</u> (lower growth potential) reduced by ~1.5 to 2.0 kg.
 [<u>Finishing Bulls</u> (higher growth potential) increased by ~1.5 to 2.0 kg]

Source: Teagasc, Grange

The Irish Agriculture and Food Development Authority

Maize meal vs. Rolled Barley

		Cereal type		Sig.
		Rolled Barley	Maize Meal	
	Silage DM intake (kg/day)	6.5	6.4	NS
Suckler-bred steers	Total DM intake (kg/day)	10.5	10.4	NS
Grass silage ad libitum + 4 kg	Daily live weight gain (kg)	0.98	0.99	NS
concentrate DM daily	FCE (g live weight gain/kg DM intake)	93	95	NS
Coarse rations	Slaughter weight (kg)	680	681	NS
	Carcass weight (kg)	388	385	NS
	Kill-out proportion (g/kg)	570	565	NS
	Carcass conformation score (1-15)	8.5	8.2	NS
	Carcass fat score (1-15)	6.4	6.9	NS

Source: Teagasc Grange - MMcG

FOUR previous Teagasc studies comparing Maize meal vs. rolled Barley-based rations

- ~Replacing 50% rolled barley with maize meal (+ soyabean meal)
- Concentrate offered to young bulls ad libitum (3 x dairy-bred / 1 x suckler-bred) ٠
- No difference in animal performance **except** 1 study, in favour of Maize meal ٠
- No difference in carcass fatness in any of the studies ٠

'Native' cereals: Barley vs. Oats

Experiment 1

- Suckler-bred steers
- Grass silage ad libitum
 + 4 kg concentrate DM daily
- Coarse rations

Experiment 2

	Rolled Barley	Rolled Oats	Sig.
Silage DM intake (kg/day)	5.9	5.8	NS
Total DM intake (kg/day)	9.9	9.8	NS
Final live weight (kg)	697	697	NS
Carcass weight (kg)	402	405	NS
Conformation score (1-15)	9.0	9.5	NS
Fat score (1-15)	7.9	7.8	NS

	Rolled Barley	Rolled Oats	Sig.
Silage DM intake (kg/day)	5.1	5.4	NS
Total DM intake (kg/day)	9.1	9.4	NS
Daily live weight gain - ADG (kg)	1.03	1.03	NS
Feed conversion ratio (kg DM/ kg ADG)	8.9	9.2	NS
Slaughter weight (kg)	570	571	NS
Carcass weight (kg)	328	325	NS
Kill-out proportion (g/kg)	564	560	NS
Carcass conformation score (1-15)	9.1	8.6	NS
Carcass fat score (1-15)	7.6	7.3	NS

Source: Teagasc Grange - MMcG

Legumes: Beans & Peas

Experiment 1

 Suckler-bred steers

- Grass silage ad libitum + 4 kg concentrate DM daily
- Isonitrogenous coarse rations

Experiment 2

	Protein-en		
	Flaked Beans	Flaked Peas	Sig.
Silage DM intake (kg/day)	5.8	5.8	NS
Total DM intake (kg/day)	9.8	9.8	NS
Final live weight (kg)	70 1	688	0.08
Carcass weight (kg)	405	396	0.05
Conformation score (1-15)	9.7	8.7	0.07
Fat score (1-15)	7.9	7.8	NS

	Protein-energy source				
	Flaked Beans	Flaked peas	Maize Gluten	Corn Distillers	Sig.
Silage DM intake (kg/day)	6.4	6.2	6.5	6.5	NS
Total DM intake (kg/day)	10.4	10.2	10.5	10.5	NS
Daily live weight gain (kg)	0.96	0.96	1.02	0.99	NS
FCE (g live weight gain/kg DM intake)	91.4	93.9	97.3	93.3	NS
Slaughter weight (kg)	678	678	685	681	NS
Carcass weight (kg)	383	390	387	384	NS
Kill-out proportion (g/kg)	566	576	565	564	NS
Carcass conformation score (1-15)	8.2	8.8	8.1	8.3	NS
Carcass fat score (1-15)	6.8	6.4	7.0	6.3	NS

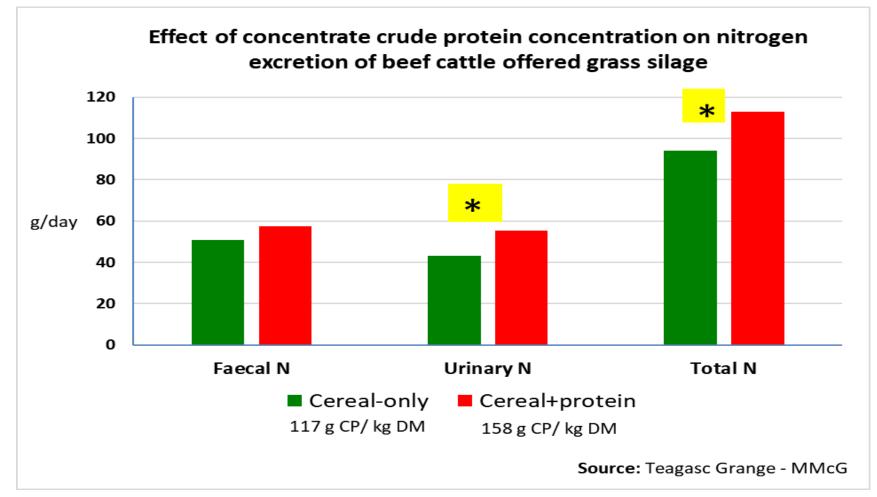
Source: Teagasc Grange - MMcG

Response to protein in Finishing Cattle

- Grass silage + concentrates
- Finishing steers / heifers / bulls
 - <u>Barley-based</u> concentrate + Protein supplement:
 - » High DMD silage = X
 - » Low DMD silage = \checkmark
 - Low crude protein grass silage = ✓

% CP in Dietary DM Heifers/Steers ~11-12 Bulls: growing ~13-15

Bulls: finishing


Implications

- With low DMD & low CP grass silage
 - » Higher CP % required in concentrate

~12-13

Effect of reducing concentrate crude protein concentration on nitrogen excretion

Thank you for your attention

