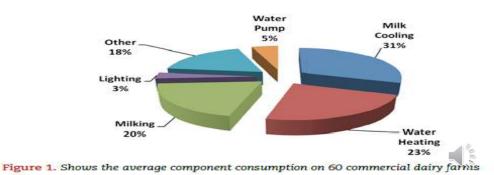
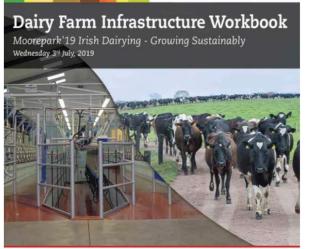
Water Heating Options for Dairy Farms


Dr. John Upton Milk Quality Symposium 2020

Irish milk production energy requirements


- Electricity consumed = 42 kWh/tonne milk produced (Upton et al., 2013)
- Projected that by 2020 Ireland will produce up to 8.8 billion litres; this will require ~ 378 GWh of electricity
- Electricity related CO₂ emissions may be 182,000 tonnes by 2020 unless mitigation strategies are implemented.
- Requirement to improve efficiency by 30% and reduce primary energy use by 30% by 2030

Dairy Farm Energy Consumption

Cost of electricity = €5.00 per tonne of milk sold Max = €9.00 Min = €2.50

Dairy farm infrastructure workbook

Introduction	6
Grazing infrastructure	7
Paddock size and layout	9
Farm roadways	12
Fencing	22
Water system	24
Case study farm example	31
Milking practices and energy use	34
Milking efficiency	34
Milking facilities worksheet	41
Energy efficiency	46
Electricity usage survey	48
Energy audit worksheet	49
Notes	52

 $\underline{https://www.teagasc.ie/media/website/publications/2019/Dairy-Farm-Infrastructure-\underline{Workbook.pdf}}$

Water Heating Requirements

- •Ensure adequate supply at the correct temperature
- 10 Litres of hot water required per cluster for machine washing –
 Generally at 80 degrees C, check wash trough size
- Allow for heating 2% of bulk tank volume for tank washing –
 Generally at 70 degrees C, check user manual

E.g. 16 unit parlour requires 160 L hot water per wash

- 8,000 L bulk tank requires 160 L hot water per wash
- 320 L required if washing both on the same day

Electrical water heating

- Low capital cost (approx €1,500 for a system of 500 L capacity)
- Best blend of capital and running costs up to 300 L per day
- Restricted by night rate electricity to keep running costs low
- Long heating times, approx 8 hours to heat 300 L from 10 to 80 degrees with 3 kW element
- Higher emissions 5.5 kg CO₂ per 100 L

Night Rate Electricity

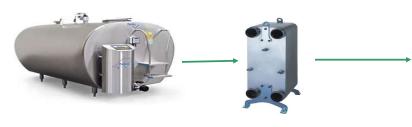
- Day rate = €0.18 / kWh
- Night Rate = €0.085 / kWh
- Free installation, small standing charge
- Use timers with battery back up
- Night rate from 12 midnight to 9am summer
 - 11 pm to 8am winter time

Oil fired water heating

- Reduced heating times, 1.5 hours to heat 500 L from 10 to 80 degrees with 26 kW oil boiler
- Not restricted by night rate electricity
- Higher capital cost (approx €3,500 for a 500 L hot water capacity)
- · Available either tanked or instant
- Ensure system can deliver required volume quickly
- Lower emissions 3 kg CO₂ per 100 L

LPG fired water heating

- Not restricted by night rate electricity
- Higher capital cost
- Typically installed as instant heaters
- Ensure system can deliver required volume quickly
- Lower emissions 2.4 kg CO₂ per 100 L


Water Heating Running Costs

System type	Cost per 100 litres hot water	CO ₂ emissions per 100 litres
Day rate electricity	€2.10	5.5 kg
Night rate electricity	€0.94	5.5 kg
Gas (LPG) fired	€0.87	2.4 kg
Oil (Kerosene) fired	€0.56	3 kg

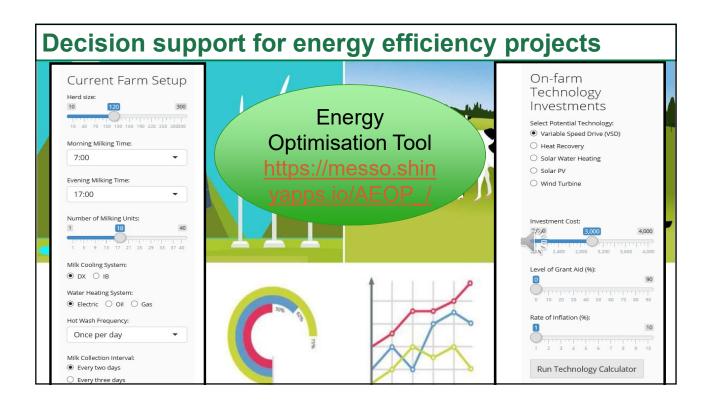
- •Oil and gas systems worth considering from a financial point of view where daily use exceeds 300 L of hot water per day
- •Convenience also affects decision making around system choice Prices correct on 08/12/2020

Options to increase efficiency - Heat Recovery

- Heat energy is removed from milk during cooling
- Energy transferred to a tank of water
- Can reduce water heating costs by 40-50%
- Retrofitting is possible
- TAMS grant available

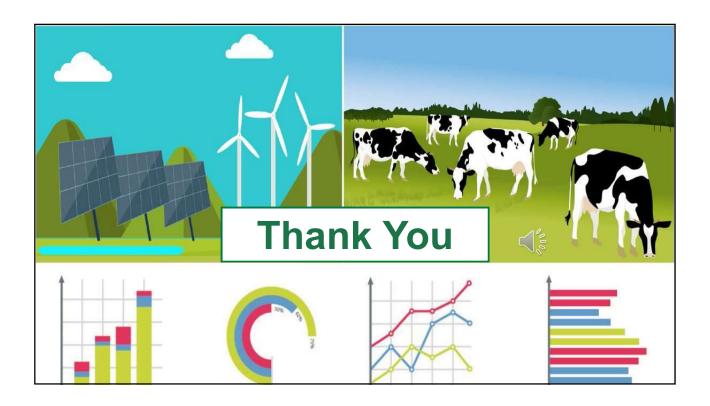
Simple efficiency measures

- Test water for hardness install a water softer for heating system if result is over 300 mg/L calcium carbonate
- Use best quality insulation
- Time system to reduce standing losses
- · Service gas and oil systems annually



Solar Photovoltaic (PV)

- Generates renewable electricity from the sun
- TAMS grant for example 6 kWp system (Max 11 kWp)
- Important to size systems for self consumption
- Saves ~ 3 tonnes CO₂ per year for 6 kWp system
- Qualifies for accelerated capital allowances
- Water heater can be used for storage of excess electricity



Summary

- Calculate volumes required ensure that water heating system can deliver the quantities required rapidly
- Chose a cost efficient system with low running costs and low CO₂ emissions

Use dairy energy decision support tool to help with decision making

