#### **Water Heating Options for Dairy Farms**



Dr. John Upton
Milk Quality Symposium 2019



# **Content of presentation**

- Energy requirements of water heating
- 2. Providing sufficient quantities of hot water
- 3. How to be cost efficient
- 4. How to be environmentally efficient

#### **Dairy Farm Energy Consumption**



Figure 1. Shows the average component consumption on 60 commercial dairy farms

Cost of electricity = €5.00 per tonne of milk sold
National dairy usage in 2018 was ~ 312 GWh 180,000 T CO<sub>2</sub>

#### **Water Heating Requirements**

- Ensure adequate supply at the correct temperature
- 10 Litres of hot water required per cluster for machine washing –
   Generally at 80 degrees C, check cleaning product advice
- Allow for heating 2% of bulk tank volume for tank washing –
   Generally at 70 degrees C, check cleaning product advice
- E.g. 16 unit parlour requires 160 L hot water per wash
- 8,000 L bulk tank requires 160 L hot water per wash
- 320 L required if washing both on the same day

#### Dairy farm infrastructure workbook

| Infrastructure Workbook  Dairying - Growing Sustainably |
|---------------------------------------------------------|
|                                                         |
|                                                         |

| Introduction                     | 6  |
|----------------------------------|----|
| Grazing infrastructure           | 7  |
| Paddock size and layout          |    |
| Farm roadways                    |    |
| Fencing                          |    |
| Water system                     |    |
| Case study farm example          | 31 |
| Milking practices and energy use | 34 |
| Milking efficiency               | 34 |
| Milking facilities worksheet     |    |
| Energy efficiency                | 46 |
| Electricity usage survey         | 48 |
| Energy audit worksheet           |    |
| Notes                            | 52 |

https://www.teagasc.ie/media/website/publications/2019/Dairy-Farm-Infrastructure-Workbook.pdf

### **Electrical water heating**

- Low capital cost (approx €1,500 for a system of 500 L capacity)
- Best blend of capital and running costs up to 300 L per day
- Restricted by night rate electricity to keep running costs low
- Long heating times, approx 8 hours to heat 300 L from 10 to 80 degrees with 3 kW element
- Higher emissions 6 kg CO<sub>2</sub> per 100 L



# **Water Tanks**





# **Night Rate Electricity**

- Day rate = €0.18 / kWh
- Night Rate = €0.085 / kWh
- Free installation, small standing charge
- Use timers with battery back up
- Night rate from 12 midnight to 9am summer
  - 11 pm to 8am winter time





#### Oil fired water heating

- Not restricted by night rate electricity
- Available either tanked or instant
- Ensure system can deliver required volume quickly
- Higher capital cost (approx €3,500 for a 500 L hot water capacity)
- Reduced heating times, 1.5 hours to heat 500 L from 10 to 80 degrees
- Lower emissions 3 kg CO<sub>2</sub> per 100 L

# LPG fired water heating

- Not restricted by night rate electricity
- Higher capital cost
- Typically installed as instant heaters
- Ensure system can deliver required volume quickly
- Lower emissions 2.4 kg CO<sub>2</sub> per 100 L



# **Water Heating Running Costs**

| System type            | Cost per 100 Litres |
|------------------------|---------------------|
| Day rate electricity   | €2.10               |
| Night rate electricity | €0.94               |
| Gas fired system       | €0.91               |
| Oil fired system       | €0.72               |

- •Oil and gas systems worth considering from a financial point of view where daily use exceeds 300 L of hot water per day
- Convenience also affects decision making around system choice

### Simple efficiency measures

- Test water for hardness install a water softner for heating system if result is over 300 mg/L calcium carbonate
- Use best quality insulation
- Time system to reduce standing losses
- Service gas and oil systems annually





### **Options to increase efficiency - Heat Recovery**

- Heat energy is removed from milk during cooling
- Energy transferred to a tank of water
- Retrofitting is possible





#### **Heat Recovery**

- HR can meet 30-50% of water heating load
- Payback varies depending on parlour size, hot wash frequency and bulk tank size
- Check payback on case by case basis
- TAMS grant available



# **Solar Photovoltaic (PV)**

- Generates renewable electricity from the sun
- TAMS grant for 6 kWp system
- Saves ~ 3 tonnes CO<sub>2</sub> per year
- System cost ~ €7,500
- Qualifies for accelerated capital allowances
- Water heater can be uses for storage of excess electricity



# Decision support for energy efficiency projects



#### Solar Photovoltaic Example

Dairy Energy Decision Support Tool



# Solar Photovoltaic Example 40% grant

Dairy Energy Decision Support Tool



# **Summary**

 Calculate volumes required – ensure that water heating system can deliver the quantities required rapidly

 Chose an efficient system with low running costs and low CO<sub>2</sub> emissions

Use dairy energy decision support tool to help with decision making



# **Solar Thermal**



#### **Solar Thermal**

 Solar thermal system can meet on average 40% of water heating load

- The solar tank should be used as a buffer tank only. A second tank to heat the water to 80 degrees is required
- The solar tank should pre feed the final temperature water tank
- No grant support for solar thermal, paybacks of 10 years



#### Irish milk production energy requirements

- Electricity consumed = 42 kWh/tonne milk produced (Upton et al., 2013)
- 7.3 billion Litres of milk produced in 2017 (CSO 2018)
- Total electricity required in 2017 was ~ 312 GWh
- Projected that by 2020 Ireland will produce up to 8.8 billion litres; this will require ~ 378 GWh of electricity
- Electricity related CO<sub>2</sub> emissions may be 182,000 tonnes by 2020 unless mitigation strategies are implemented

