Teagasc Timber Measurement Course

Thinning Assessment Plot calculations

Tree stocking

Plot size $=0.01 \mathrm{HA}$ (100 sq. metres)
Plot width (between 5 rows of trees) $=\mathrm{m}$
100 / width = plot length (m)
Number of trees counted in two rows either side of brash path (mid-point) for length of plot $=\mathrm{N}$
Number of trees per hectare $=\mathrm{N} \times 100$

DBH (diameter at breast height (1.3 m)) assessment

DBH	NO. TREES	ARITHMETIC
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
TOTALS		

Arithmetic mean $\mathrm{dbh}=\mathrm{Ta} / \mathrm{n}=$
cm
MEAN DBH (Quadratic) $=\quad \mathbf{c m}$ (rounded down)
TOP HEIGHT =
m
FORM HEIGHT(from table) = m
THIN DIAMETER $=$ Mean $\mathrm{dbh}-2=\mathbf{c m}$
THIN MEAN VOL.TREE =
(Thin dia. X Thin dia.) $\times 0.00007854 \times$ Form height $=$ m^{3}

REMOVE 30\% STEMS = Stocking per ha X 0.3 = Thin stems per ha $=$
THIN VOL.TO BE REMOVED $=$ Thin stems per ha X Thin mean vol. $=\quad \mathbf{m}^{3} / \mathbf{h a}$

