





## **Teagasc Timber Measurement Course**

## Thinning Assessment Plot calculations

## **Tree stocking**

| Plot size = 0.01 HA (100 sq. metres)                                                         |
|----------------------------------------------------------------------------------------------|
| Plot width (between 5 rows of trees) = m                                                     |
| 100 / width = plot length (m)                                                                |
| Number of trees counted in two rows either side of brash path (mid-point) for length of plot |
| = N                                                                                          |
| Number of trees per hectare = $N \times 100$                                                 |

## DBH (diameter at breast height (1.3 m)) assessment

| DBH    | NO. TREES | ARITHMETIC |
|--------|-----------|------------|
| 7      |           |            |
| 8      |           |            |
| 9      |           |            |
| 10     |           |            |
| 11     |           |            |
| 12     |           |            |
| 13     |           |            |
| 14     |           |            |
| 15     |           |            |
| 16     |           |            |
| 17     |           |            |
| 18     |           |            |
| 19     |           |            |
| 20     |           |            |
| 21     |           |            |
| 22     |           |            |
| 23     |           |            |
| 24     |           |            |
| TOTALS | (n)       | (Ta)       |

| Arithmetic mean $dbh = Ta/n = cm$                                         |    |           |
|---------------------------------------------------------------------------|----|-----------|
| MEAN DBH (Quadratic) = cm (rounded down)                                  |    |           |
| TOP HEIGHT = m                                                            |    |           |
| FORM HEIGHT(from table) = <b>m</b>                                        |    |           |
| THIN DIAMETER = Mean dbh $-2 = cm$                                        |    |           |
| THIN MEAN VOL.TREE = (Thin dia. X Thin dia.) X 0.00007854 X Form height = | m³ |           |
| REMOVE 30% STEMS = Stocking per ha X 0.3 = Thin stems per ha =            |    |           |
| THIN VOL TO BE DEMOVED - Thin stome per ha Y Thin mean vol -              |    | $m^3/h$ s |