

Phenotypic and genetic relationship between litter birthweight characteristics, indicators of intrauterine growth restriction and piglet survival

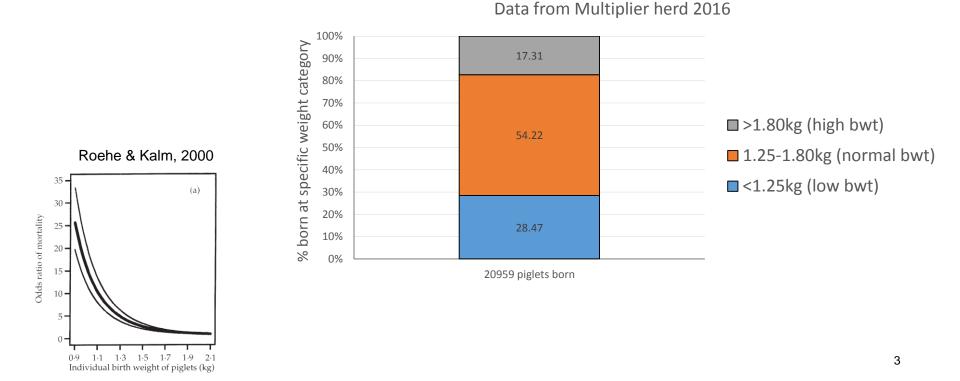
S.M. Matheson¹, G.A. Walling², S.A. Edwards¹

¹ Newcastle University, ² JSR Genetics Ltd.

PROHEALTH

Risk factor for piglets

- Low birth weight piglets
- Industry-wide push for selection of increased litter size in breeding herds


- More piglets being born with reduced birth weight (Rutherford *et al*, 2013; Root *et al*, 2012)
- More intra-litter birth weight variation (Rutherford et al, 2013; Baxter et al, 2013)

What is a low birth weight piglet?

- Meta-analysis study of risk focusing on piglet outcomes
- Piglets with a birth weight ≤1.25kg are at a significant risk of impaired lifetime growth (Douglas et al, 2013)

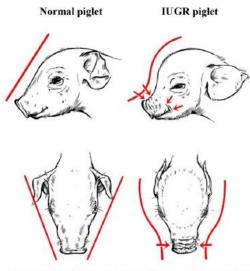
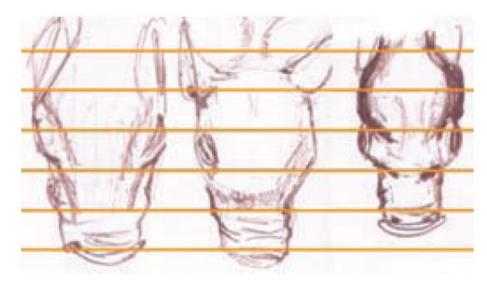
More than just low birth weight?

- Low birth weight piglets may be:
- Small for gestational age (SGA)
- Intrauterine growth restricted/retarded (IUGR)
- Intrauterine growth restricted (IUGR) piglets typically identified by birthweight
- However, birthweight does not indicate whether a piglet has been exposed to IUGR during development

More than just low birth weight?

How to recognise IUGR?

- Chevaux et al 2010 developed scoring system for identifying IUGR piglets based on head morphology
- Brain sparing' effects prioritised brain development
- Foetal adaptive reaction to placental deficiency

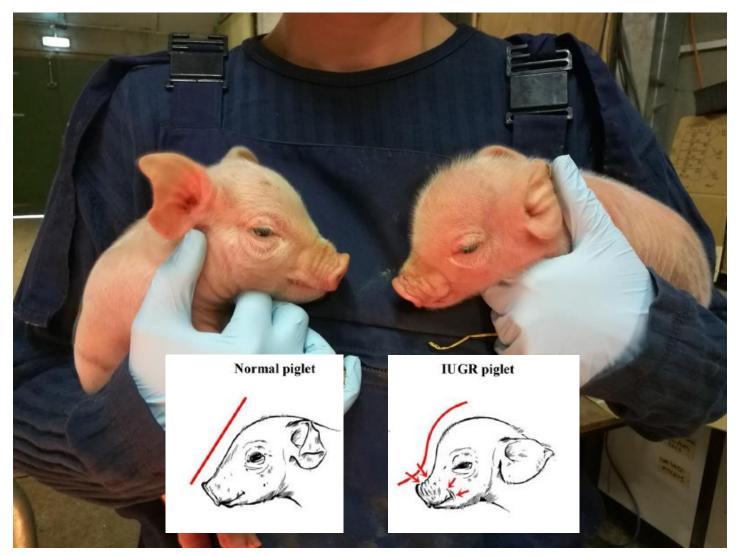

Figure 2. Illustrations of a normal (left) and a growth-restricted piglet (right). Criteria for growth restriction were 1) steep, dolphin-like forehead, 2) bulging eyes, and 3) wrinkles perpendicular to the mouth. IUGR = intrauterine growth restriction. See online version for figure in color.

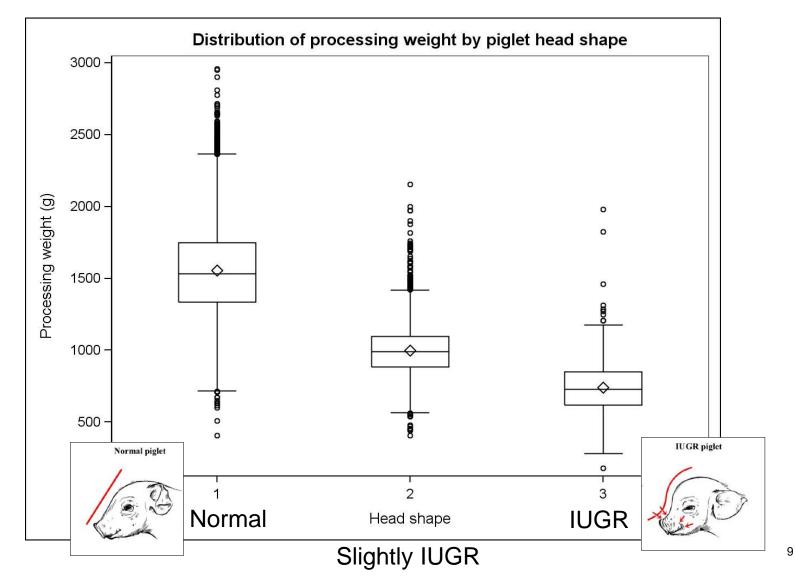
Figure 1: Dorso-ventral characteristics of normal (left), intermediate (middle) and IUGR (right) piglets

Normal vs IUGR head shape

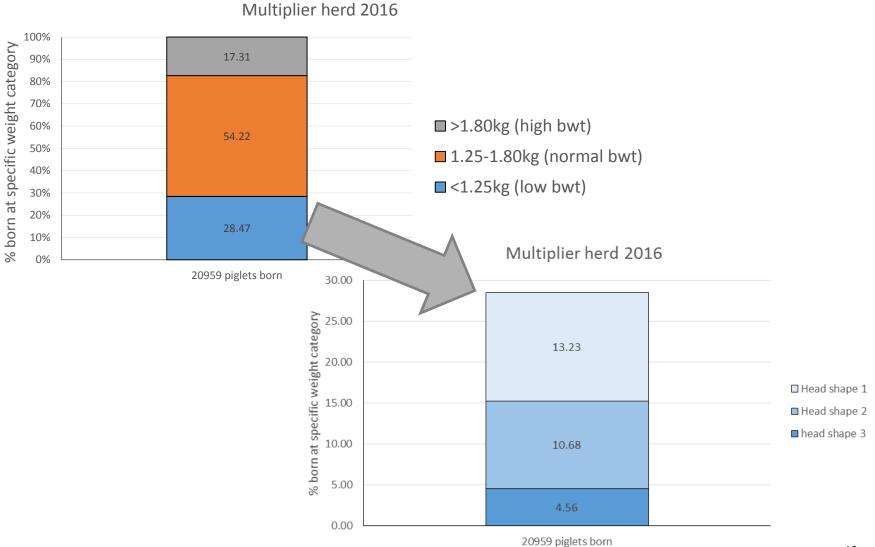
Data collection

Data collection over 52 weeks

- Number of piglets 21,159
- Birth weight
- Head shape
- Cause of death (and date)
- 1,575 farrowings
 - 862 individual sows
- Parity 1-6+



www2.sch.im/groups/livestockroadshows/revisions/498d3/4/



Birth weight – head shape

What is a low birth weight piglet?

Genetic selection approach:

Two approaches:

- Piglet level selection:
 - Select on piglet head shape at birth

	Head shape 0/1	Birth weight
Head shape 0/1	0.05 ± 0.016	-0.62 ±0.008
Birth weight	-0.72 ± 0.09	0.18 ± 0.040

Genetic selection approach:

Two approaches:

Piglet level selection:

Select on piglet head shape at birth

Sow level selection:

- Select on the proportion of piglet head shapes at birth within a litter
- Proportion of IUGR-head shape piglets IUGR-PROP
- Within litter average birth weight avBWT
- Within litter standard deviation of birth weight sdBWT
- Litter size at birth Littersize
- Proportion of litter surviving to processing SURV-PROP

Genetic selection approach – 2 PROHEALTH

Sow level - selection on IUGR-PROP

	IUGR- PROP	avBWT	sdBWT	Littersize	SURV- PROP
IUGR-PROP	0.19 ± 0.05	-0.52 ± 0.02	0.10 ± 0.02	0.23 ± 0.02	-0.18 ± 0.02
avBWT	-0.88 ± 0.07	0.38 ± 0.07	-0.06 ± 0.03	-0.59 ± 0.02	0.26 ± 0.02
sdBWT	-0.23 ± 0.22	0.61 ± 0.17	0.13 ± 0.05	0.19 ± 0.03	-0.08 ± 0.03
Littersize	0.63 ± 0.19	-0.62 ± 0.14	-0.53 ± 0.27	0.11 ± 0.04	-0.11 ±0.03
Surv-PROP	-0.64 ± 0.25	0.85 ± 0.20	0.49 ± 0.32	-0.63 ± 0.29	0.06 ± 0.04
Repeatability	0.19 ± 0.04	0.40 ± 0.03	0.17 ± 0.04	0.25 ± 0.03	0.17 ± 0.04

Asreml model – parity !r ANIMAL ide.(ANIMAL)

Conclusions

- Piglet survival is phenotypically impaired by large litter size and low piglet birth weight (nothing new)
- IUGR has detrimental effects on survival these are in addition to the influence of birth weight
- IUGR using head shape as a simple phenotypic marker is amenable to genetic selection
- Selection <u>at the **sow level**</u> against IUGR could be highly effective in improving piglet survival
- Selection for lower proportion of IUGR in a litter has favourable genetic correlations with average birth weight and survival
- However, the genetic correlation with litter size is unfavourable

Sandra Edwards

Newcastle University

Sandra.Edwards@newcastle.ac.uk

www.fp7-prohealth.eu

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613574.