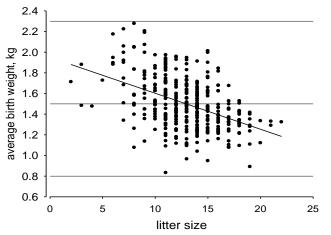


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs FDEA Agroscope Liebefeld-Posieux ALP Research Station ALP

Milk and meat production

Dietary L-arginine supply during early gestation promotes myofiber hyperplasia

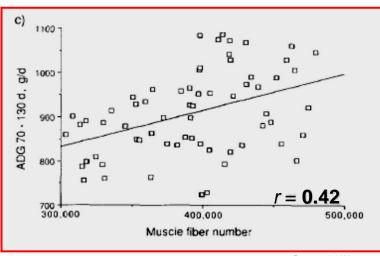

J. G. Madsen^{1,2}, C. Pardo^{1,2}, M. Kreuzer² and G. Bee^{1*}

¹Agroscope Posieux, Posieux, Switzerland

² ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland

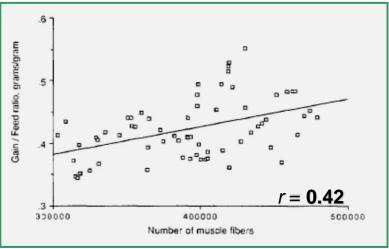
Known relationships

• Litter size is negatively correlated with average litter birth weight



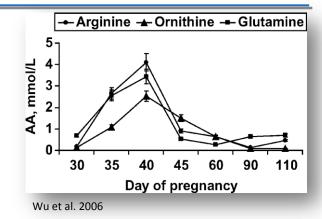
- Birth weight is negatively correlated with
 - survival rate in the first week after birth
 - postnatal growth
 - carcass leanness
 - some meat quality traits

myofiber number myofiber size


Total myofiber number (TFN)

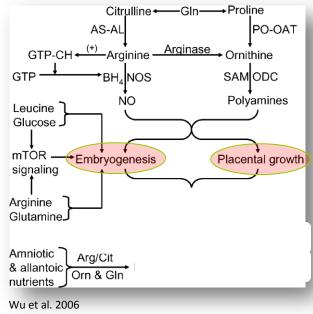
ADG vs. TFN

Dwyer et al. 1993 J. Anim. Sci. 1993. 71:3339-3343


G/F vs. TFN

Dwyer et al. 1993 J. Anim. Sci. 1993. 71:3339-3343

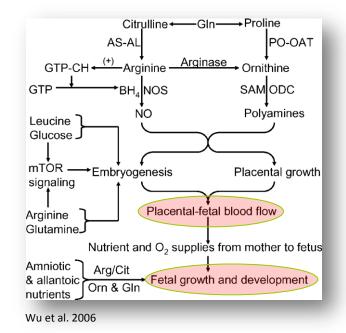
ARGININE ↔ PRENATAL DEVELOPMENT

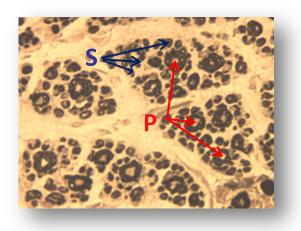

• In early pregnancy, arginine and ornithine level elevated in porcine amniotic and allantoic fluid

 Associated with a high syntheses rate of nitric oxide and polyamine in the porcine placenta

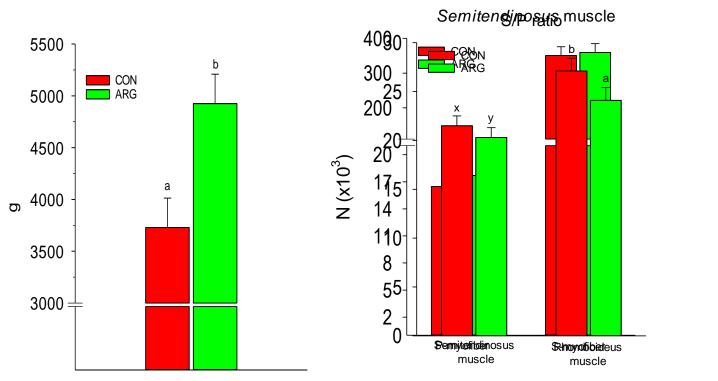
Key role in angiogenesis

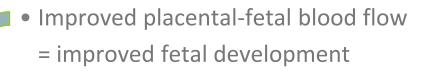
= placental and embryonic development




$\mathsf{Arginine} \longleftrightarrow \mathsf{Myogenesis}$

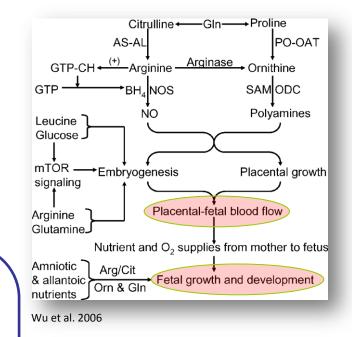
Increased litter size without impact of birth weight

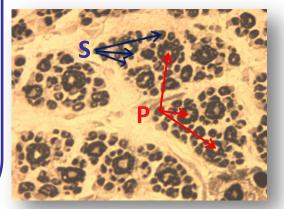

Impact on muscle development?


Dietary manipulation of myofiber development

Average fetal weight (d 75 of gestation)

Animal (2010), 4:10, pp 1680-1687


$\mathsf{Arginine} \longleftrightarrow \mathsf{Myogenesis}$



 Increased litter size without impact of birth weight

Primary fibers serve as a scaffold for the formation of secondary fibers

Greater number primary fibers = greater number of secondary fibers

Bérard and Bee 2010

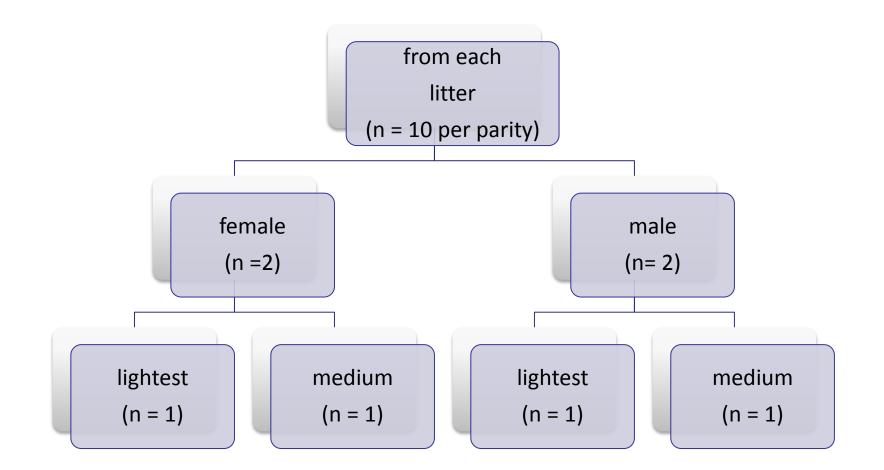
Hypothesis

Based on the association between dietary arginine supply, the extent of placental vascularization, the fetal nutrient supply and muscle development 2 working hypothesis were formulated:

- Hypothesis 1:
 - Supplementing L-arginine to an early gestational diet of the dams would promote hyperplasia leading to an increased number of myofibers in their offspring at birth.
- Hypothesis 2:
 - L-arginine is especially <u>efficient</u> in piglets suffering from <u>IUGR</u>.

Experimental design

Animals:


- Intact sows (I; litter size: > 15; naturally crowded)
- OL sows (OL; unilaterally oviduct ligated; uncrowded)

All sows (n = 10) were at the beginning of the experiment in their fifth parity

Diets:

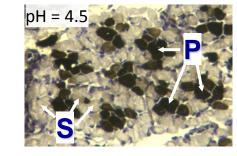
- Control (C; 100 g/d alanine from d 14 to 28 of gestation)
- Arginine (Arg; 25 g/d arginine from d 14 to 28 of gestation)

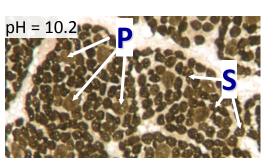
Over the selection criteria at farrowing

Data and sample collection and analysis

Collection of data and samples at birth

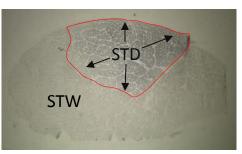
- Litter size
- BtW of all piglets born


From the selected newborn piglets


- Weight of the heart, kidney, liver, lung and spleen
- Weight of the brain
- Weight of the semitendinosus and psoas major

Histological analyses in the semitendinosus

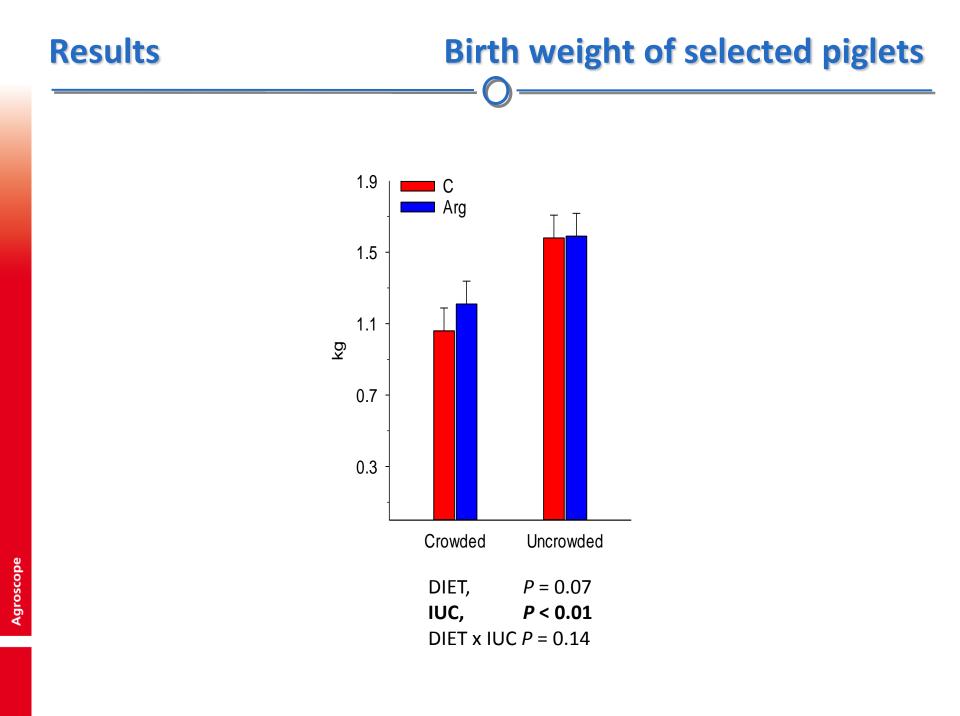
(mATPase staining after pre-incubation at pH 4.5 and 10.2)


- CSA
- Number of P- and S-fibers
- S/P ratio
- TNF

RT-PCR analysis

Transcript expression of

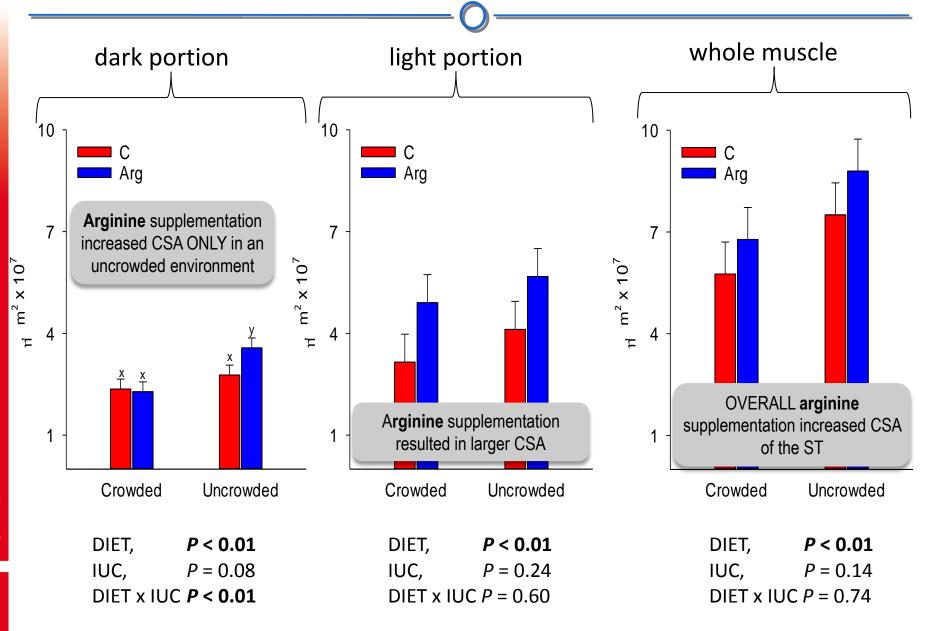
- myogenic factor 5 (MYF5)
- myogenic differentiation factor (MYOD)
- myogenin (MYOG)
- muscle-specific regulatory factor 4 (MRF4)
- myostatin (MSTN)

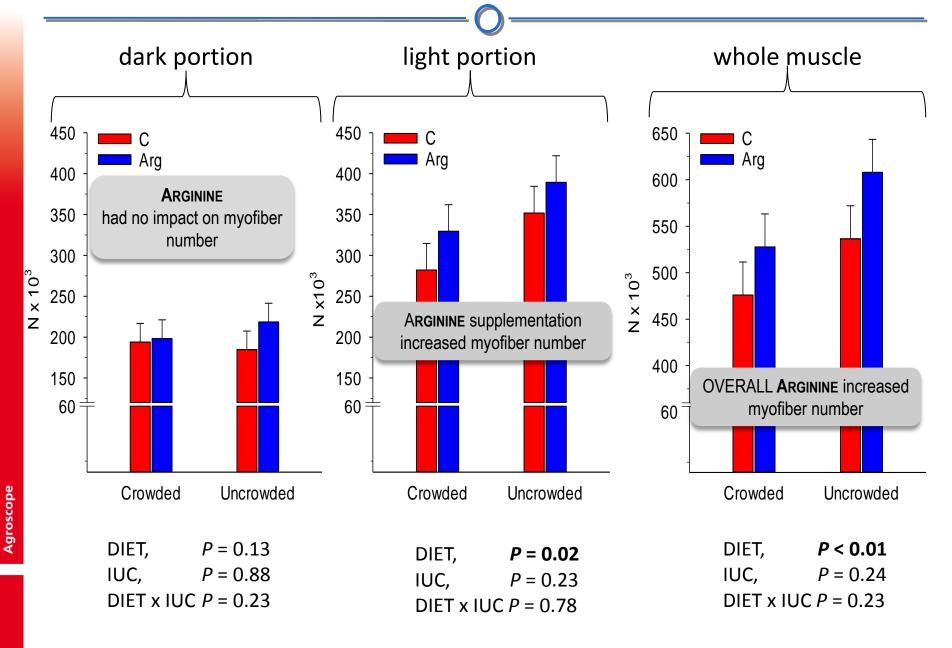

MYF5 MYOD Myogenin MRF4 DETERMINATION DIFFERENTIATION MATURATION stem - cell Myoblasts Myotubes Adult myotubes • Adult myotubes • envy chain myosin • specific metabolic proteins

www.sciencedirect.com

- AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2)
- insulin growth factor 2 (IGF2)
- insulin growth factor binding protein 5 (IGFBP5)

Litter characteristics


	Crowded		Uncrowded		P-values			
Trait	С	Arg	С	Arg	SEM	IUC	DIET	IUC x DIET
Litter size, n								
Total born	15.5	15.3	10.5	11.9	1.71	0.26	0.72	0.66
Born alive	13.1	14.5	9.1	10.3	1.49	0.23	0.46	0.96
Birth weight, kg								
Total born	1.22	1.48	1.57	1.51	0.068	0.28	0.21	0.13
Born alive	1.24	1.50	1.59	1.53	0.068	0.28	0.22	0.13
STD	0.24	0.25	0.18	0.14	0.056	0.41	0.87	0.63


Morphometric measures

Trait expressed	Crowded		Uncrowded			P-values			
in g/100 g birth weight	С	Arg	С	Arg	SEM	IUC	DIET	IUC x DIET	
Heart	0.70	0.67	0.67	0.65	0.02	0.49	0.03	0.72	
Liver	2.21	2.47	2.78	2.77	0.18	0.13	0.19	0.14	
Spleen	0.10 ^b	0.09 ^a	0.09 ^{ab}	0.09 ^{ab}	0.01	0.67	0.18	0.02	
Lung	1.47	1.39	1.31	1.27	0.11	0.36	0.25	0.76	
Kidney	0.74	0.72	0.80	0.82	0.04	0.27	0.76	0.40	
Brain	2.87	2.53	2.47	2.50	0.32	0.62	0.17	0.11	
Brain:liver weight ratio	1.36	1.12	0.94	0.92	0.22	0.27	0.08	0.18	
Semitendinosus	2.09	2.08	2.19	2.28	0.11	0.33	0.42	0.34	
Psoas major	2.06	2.14	2.31	2.39	0.14	0.28	0.28	0.99	

Muscle area

Myofiber number

Results Gene expression of myogenesis-related genes

	Crowded		Uncrowded			P-values			
Trait	С	Arg	С	Arg	SEM	IUC	DIET	IUC x DIET	
IGF2	2.36	1.55	0.91	1.70	0.555	0.487	0.967	0.950	
IGFBP5	5.63	5.65	2.32	4.62	2.190	0.489	0.233	0.297	
MSTN	1.60	1.64	0.46	0.98	1.754	0.351	0.232	0.110	
MYF5	0.35	0.42	0.24	0.28	1.694	0.631	0.531	0.159	
MYF6	0.58	0.65	1.18	0.98	0.576	0.623	0.859	0.631	
MYOD1	2.36	1.84	0.68	0.48	2.143	0.223	0.340	0.418	
MYOG	0.94	0.70	1.32	1.11	0.255	0.333	0.168	0.417	
PRKAA2	0.72 ^b	1.04b ^b	0.26ª	0.15ª	0.194	0.024	0.264	0.091	

PRKAA2 (inhibitor of muscle protein synthesis) greater expression related to

- lower BtW
- lower muscle weight

Answer to hypothesis

Supplementing L-arginine early in gestation

- reduces the negative impacts of IUGR,
 - increased hyperplasia, birth weight and STM area.
- as muscle area increased more than TNF → prenatal myofiber hypertrophy
- not especially efficient in L-BtW piglets